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A B S T R A C T

The isogeometric analysis (IGA) proposed by Hughes is a new approach in which Non-Uniform Rational B-
Splines (NURBS) are used as a geometric representation of an object. It has superiorities of capturing exact
geometry, simplifying refinement strategy, easily achieving degree elevation with an arbitrary continuity of
basic functions and getting higher calculation accuracy. In this paper, the IGA approach is extended to solve the
free vibration problem of curvilinearly stiffened cylindrical and shallow shells. The first-order shear deformation
theory (FSDT) and the Reissner-Mindlin shell theory are used to model the shells, and the three-dimensional
curved beam theory is employed to model the stiffener which can be placed anywhere within the shell. Some
numerical examples are solved to study the vibration behavior of the curvilinearly stiffened shells. The effects of
shell and stiffener element numbers, boundary conditions, stiffener ply modes and shell thicknesses on the
natural frequency are investigated. Results have shown the correctness and superiorities of the present method
by comparing the results with those from commercial finite element software and some numerical methods in
existing literatures. One of the advantages is that the element number is much less than commercial finite
element software, whereas another is that the mesh refinement process is much more convenient compared with
traditional finite element method (FEM).

1. Introduction

Stiffened shells have been widely used in aircraft fuselages, missile
bodies, submarines and roofs for decades. These structures can achieve
better stiffness and strength than normal shells as well as save the
structure material and reduce the weight, which improve the utilization
efficiency and economy.

During the last several decades, an increasing number of researches
on stiffened shells have been conducted. Earlier studies on stiffened
cylindrical shells using the finite element method (FEM) can be found in
the paper of Hoppmann [1]. Orthogonal plate model was used to study
the vibration of stiffened cylindrical shells where the stiffeners laid
vertically. After that, Stanley and Ganesan [2] studied the free vibration
of clamped stiffened cylindrical shells, in which both short and long
shells were discussed, and the effects of stiffener type, number and laid
form on the natural frequency were investigated. Additionally, Nayak
and Bandyopadhyay [3] used the FEM to study the free vibration of
several forms of stiffened shallow shells, including ellipsoidal, hyper-
boloid and conical shells. In order to study the free vibration of
stiffened shell, Samanta and Mukhopadhyay [4] developed a three-
node triangular shell element combining Kirchhoff triangular plate
bending element with Allman plane stress element. Pan et al. [5]
studied the free vibration of stiffened cylindrical shells under arbitrary

boundary conditions. Efimtsov and Lazarev [6] researched the forced
vibration of stiffened plates and cylindrical shells. Recently, Balamur-
ugan and Narayanan [7] studied the free vibration of stiffened piezo-
electric plates and shells.

For the curvilinearly stiffened plates and shells, there already has
been a number of work being completed based on FEM as well. Shi et al.
[8,9] presented some researches on curvilinearly stiffened plates and
shells using FEM, e.g. (1) the static, vibration and buckling analysis of
curvilinearly stiffened plates; (2) the vibration with in-plane loading of
curvilinearly stiffened plates; (3) the free vibration analysis of curvili-
nearly stiffened cylindrical shells. To study the stability behavior of
complex shaped and multi-functional structure with the concept of
integrated and bonded unitized structural components, Zhao and
Kapania [10] proposed an efficient finite element buckling analysis of
unitized stiffened composite panel stiffened by arbitrarily shaped
stiffeners.

In addition to the FEM, a variety of other numerical methods have
been widely applied to dynamic stiffened plates and shells. Li [11] gave
a perturbed solution for the free vibration of ring-stiffened cylindrical
shells. Cheng and Dade [12] used Gaussian spline collocation method to
study the dynamic behavior of stiffened shells and plates. Mustafa and
Ali [13] calculated the natural frequency of stiffened cylindrical shells
using Ritz Method. Shi et al. [14] used Ritz Method to solve the
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vibration problem of curvilinearly stiffened shallow shells. Jafaria and
Bagheri [15] studied the free vibration of ring-stiffened cylindrical
shell. In their work, several methods were used, such as FEM, Ritz
method and experimental approach. They discussed the influence of
non-uniform rib section and non-equidistant rib laying problems. Qu
et al. [16] analyzed the dynamic behavior of conical-cylindrical shells
blessed with ring-stiffeners using a modified variational method in
which a variety of boundary conditions were considered and the
displacement trial functions were combined by Fourier polynomials
and Chebyshev polynomials.

In this paper, the isogeometric analysis (IGA) method proposed by
Hughes et al. [17] is applied for the free vibration of curvilinearly
stiffened shells, which has not been presented in the literature to the
authors’ knowledge. The IGA has several advantages over standard
FEM, e.g. the smoothness with arbitrary continuity order, exact
representation of shapes even at the coarsest level of discretization,
simple and systematic refinement strategy, and more accurate modeling
of complex geometries can be easily obtained. In recent years, IGA has
been used in many areas such as turbulence [18–20], fluid–structure
interaction [21–23], incompressibility [24–26], structural analysis
[27,28], shells [29] and phase-field analysis [30]. For structural
mechanics, isogeometric analysis has been extensively studied for
nearly incompressible linear and non-linear elasticity and plasticity
problem [26], structural vibrations [28], the composite Reissner-Mind-
lin plates [31], Kirchhoff-Love shells [32–34], the large deformation
with rotation-free [35] and structural shape optimization [36].

The first-order shear deformation theory (FSDT) and the Reissner-
Mindlin shell theory are used to model the shells in this paper, and the
three-dimensional curved beam theory is employed to model the
stiffener. The free vibration behavior of curvilinearly stiffened shells
is studied. The stiffeners can be placed anywhere within the shell. This
paper is organized as follows: In Section 2, a brief introduction of the B-
spline and NURBS basis functions is considered. After that, formulations
of isogeometric analysis method are presented. In Section 3, the model
of curvilinearly stiffened shells is set up. Then, free vibration analysis of
the curvilinearly stiffened shells is carried out. Section 4 is devoted to
numerical tests which show the performance of the proposed method.
In Section 5, we close this paper with some conclusions. The code is
written in the FORTRAN 90. Present results are compared with the
results available and those obtained using the NASTRAN software.

2. Isogeometric analysis method

2.1. NURBS basis functions

Given a knot vector which is a sequence in a non-decreasing order of
parameter values, written as ξ ξ ξ{ , , …, }n p1 2 + +1 ξ ξ i n p( ≤ , = 1,…, + )i i+1
where ξi is the i-th knot, n is the number of basis functions and p is the
polynomial order. The associated B-spline basis functions for a given
degree p, are defined recursively over the parametric domain by the
knot vector. For p = 0 [17],
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The derivatives of B-spline basis functions can be got from lower
order derivatives recursively. The first order derivative of a B-spline
basis function is given by
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Derivative of the k-th order is
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B-splines are convenient for free-form modeling. However, it cannot
exactly design some common geometries in engineering. To solve this
problem one usually use NURBS which are the rational functions of B-
splines.

NURBS basis functions are defined as [17].
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where N ξ( )i p, denotes the i-th B-spline basis function of order p and ωi is
the corresponding weight. For the special case in which ω c i= , ∀i , the
NURBS basis reduces to the B-spline basis.

The first order derivative of a NURBS basis function is computed
using the quotient rule. That is,
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2.2. Formulations for IGA

Take a two-dimensional element as an example to formulate
isogeometric analysis method [37]. Referring to Fig. 1 for illustration,
the mapping from the parametric domain to the physical domain is
given by
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where x yx ξ ξ= ( ( ), ( )), ξ ηξ = ( , ), n is the number of the control points,
RI is the I-th shape function, PI is the I-th control point.

The Jacobian matrix of the geometry mapping is defined as
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with the components calculated as
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where Ri ξ, and Ri η, are the derivatives of the i-th shape function Ri with
respect to the parametric coordinates ξ and η respectively, xi and yi are
the coordinates of the i-th control point respectively. The determinant
of Jξ is denoted by Jξ .

The transformation from parent domain to a parametric domain
ξ ξ η η[ , ] × [ , ]i i j j+1 +1 is given by
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where ξ and η represent the coordinates of Gauss point. Therefore, the
determinant of the Jacobian of this transformation is

J ξ ξ η η= 1
4

( − )( − )ξ i i i i+1 +1 (12)

So, integrals of a function f with two variations x and y over the
physical domain can be computed as

X.C. Qin et al. Thin-Walled Structures 116 (2017) 124–135

125



Download English Version:

https://daneshyari.com/en/article/4928594

Download Persian Version:

https://daneshyari.com/article/4928594

Daneshyari.com

https://daneshyari.com/en/article/4928594
https://daneshyari.com/article/4928594
https://daneshyari.com

