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h i g h l i g h t s

• A novel variant of the number game is studied.
• An online approximate Bayesian model captures order effects in concept learning.
• Placing people under cognitive load strengthens the order effect.
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a b s t r a c t

Learning complex symbolic concepts requires a rich hypothesis space, but exploring such spaces is
intractable. We describe how sampling algorithms can be brought to bear on this problem, leading to the
prediction that humanswill exhibit the same failuremodes as sampling algorithms. In particular,we show
that humans get stuck in ‘‘garden paths’’—initially promising hypotheses that turn out to be sub-optimal
in light of subsequent data. Susceptibility to garden paths is sensitive to the availability of cognitive
resources. These phenomena are well-explained by a Bayesian model in which humans stochastically
update a sample-based representation of the posterior over a compositional hypothesis space. Our model
provides a framework for understanding ‘‘bounded rationality’’ in symbolic concept learning.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

One of the most remarkable characteristics of human cognition
is the ability to learn symbolic concepts from very sparse data. For
example, after being shown the numbers {60, 80, 10, 30} drawn
from a set of numbers between 1 and 100, humanswill confidently
infer the set to be ‘‘multiples of ten’’ (Tenenbaum, 1999; Tenen-
baum&Griffiths, 2001). This kind of strong generalization requires
a hypothesis space rich enough to express a wide variety of con-
cepts, as well as a mechanism for efficiently exploring the hypoth-
esis space and evaluating candidate concepts. A conundrum at the
heart of concept learning is that these two requirements are at odds
with one another: The richer the hypothesis space, the harder it is
to efficiently explore. This is especially true for compositional hy-
pothesis spaces (e.g., Goodman, Tenenbaum, Feldman, & Griffiths,
2008; Kemp, 2012; Piantadosi, Tenenbaum, & Goodman, 2010),
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where the number of possible concepts is exponential in the num-
ber of primitives.Moreover, Bayesian approaches to concept learn-
ing assert that humans represent a probability distribution over the
entire hypothesis space (Shepard, 1987; Tenenbaum, 1999; Tenen-
baum & Griffiths, 2001). These considerations bring the issue of
computational tractability to the foreground.

Previous treatments of symbolic concept learning have primar-
ily focused either on abstract rational analysis without detailed
mechanistic commitments (Feldman, 2000; Kemp, 2012; Pianta-
dosi et al., 2010; Tenenbaum, 1999; Tenenbaum & Griffiths, 2001)
or on mechanistic models without a clear connection to rational
inductive principles (Goodwin & Johnson-Laird, 2011; Kruschke
et al., 1992; Nosofsky, Palmeri, & McKinley, 1994). Goodman et al.
(2008) used a compositional grammar to model boolean concept
learning, and presented provisional evidence that participants ad-
here to rational inductive principles only approximately: Behavior
was best explained by assuming that humansmake their responses
using one or a few samples from the posterior distribution over
concepts. Hypothesis sampling has become an important bridge
between rational analyses and process models (see Griffiths, Vul,
& Sanborn, 2012, for a review), with applications to vision (Ger-
shman, Vul, & Tenenbaum, 2012; Moreno-Bote, Knill, & Pouget,
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2011; Vul, Frank, Alvarez, & Tenenbaum, 2009;Wozny, Beierholm,
& Shams, 2010), theory learning (Denison, Bonawitz, Gopnik, &
Griffiths, 2013; Ullman, Goodman, & Tenenbaum, 2012) and cat-
egorization (Sanborn, Griffiths, & Navarro, 2010), among others.
Empirical evidence for hypothesis samplingwill be reviewed in the
General Discussion.

Hypothesis sampling provides a simple model of cognitive lim-
itations (in terms of howmany samples are used) while instantiat-
ing a theoretically sound mechanism for approximating Bayesian
inference (Vul, Goodman, Griffiths, & Tenenbaum, 2014). In partic-
ular, many hypothesis sampling models can be viewed as Monte
Carlo methods, which are widely used in statistics and machine
learning due to their flexibility and theoretical properties (Robert
& Casella, 2004). Previous work on concept learning in composi-
tional hypothesis spaces used Markov chain Monte Carlo (MCMC)
algorithms to generate samples (Goodman et al., 2008; Piantadosi
et al., 2010); since these algorithms evaluate hypotheses over the
entire data set at each iteration, they are cognitively implausible
for tasks in which data are presented sequentially and presum-
ably processed online (as in many domains, like word learning or
multiple-object tracking).

This paper investigates a cognitively plausible sampling al-
gorithm for performing online inference over a compositional
hypothesis space of number concepts. Our starting point is the
‘‘number game’’ described in Tenenbaum (1999). In this experi-
ment, participants were presented with a set of integers generated
from a number concept (a subset of numbers between 1 and 100),
such as ‘‘all powers of 2’’ or ‘‘all numbers between 40 and 60’’. Par-
ticipants were then asked to judge, for several other numbers, the
probability that each was generated from the same subset as the
examples presented. Tenenbaum (1999) showed that generaliza-
tion patterns in this experiment were consistent with a Bayesian
model of concept learning (described in more detail below). While
the space of number concepts is very large, Tenenbaum’s model
constrained the hypothesis space to a small number of intuitively
plausible concepts.

We will consider a richer space of compositional concepts, and
postulate a formof hypothesis sampling as a theory of howhumans
explore this hypothesis space. In particular, we argue that humans
use an online hypothesis sampling algorithm called particle
filtering that entertains multiple hypotheses (‘‘particles’’) and
continually reweights the particles as new data are observed. This
algorithm has previously been used to explain aspects of multiple
object tracking (Vul et al., 2009), category learning (Sanborn
et al., 2010), change detection (Brown & Steyvers, 2009), word
segmentation (Frank, Goldwater, Griffiths, & Tenenbaum, 2010),
and reinforcement learning (Daw & Courville, 2007; Yi, Steyvers,
& Lee, 2009). While most of this previous work has focused
on hypothesis spaces with relatively simple representational
structure (e.g., mixture models), our goal is to provide empirical
constraints on hypothesis sampling in more complex symbolic
spaces.

One implication of hypothesis sampling is that when faced
with complex or ambiguous example sets in the number game,
participants might fail to infer some concepts that have high
posterior probability. We speculated that this might happen if
examples are presented to participants sequentially, such that
the early examples favor one concept, but the later examples
tilt the posterior in favor of a different concept. If conditionally
unlikely samples are eliminated during hypothesis sampling (an
operation known as ‘‘resampling’’), the early, sub-optimal concept
will prevail. This is analogous to ‘‘garden path’’ sentences in
psycholinguistics (e.g., ‘‘we painted the walls with cracks’’) which
are difficult for humans to parse (MacDonald, 1994). Levy, Reali,
and Griffiths (2009) modeled garden path effects with hypothesis
sampling by assuming that the correct parse was eliminated from

the sample set early on during sentence processing. We adapted
this model to number concept learning, and constructed example
sequences which would lead the model to show garden path
effects. We then conducted experiments with humans to test
whether participants show the same effects.

The plan of the paper is as follows. Section 2 summarizes the
Bayesian framework for concept learning developed by Tenen-
baum (1999), and introduces a hypothesis sampling algorithm for
approximate inference. Section 3 reports an experiment with hu-
man participants playing a sequential concept learning game. We
show how the hypothesis sampling algorithm provides a rational
process account of order effects and cognitive load manipulations
in the game. Section 4 concludes the paper with a discussion of re-
lated work and future directions.

2. A Bayesian framework for concept learning

In this section, we describe and extend the Bayesian framework
for concept learning introduced by Tenenbaum (1999). We begin
by describing the generative model—a joint distribution over con-
cepts and data. The generative model specifies the learner’s as-
sumptions about what types of concepts are plausible (the prior)
and how concepts give rise to observations (the likelihood). Of
central importance is our claim about concept representation:
Number concepts are sets generated by a compositional, proba-
bilistic grammar. We then describe how hypothesis sampling can
be used to perform approximate inference over number concepts.
This sampling-based rational process model provides the basis for
our experimental investigations.

Before proceeding, we provide here a non-technical summary
of how the model works. A concept is drawn from some space of
plausible concepts (the hypothesis space), and examples are drawn
from the selected concept. The learner’s job is to infer the hidden
concept that generated the examples. Because many different
concepts can generate any particular set of examples, the problem
is fundamentally ill-posed: No single concept is unambiguously
‘‘correct’’. Rather, the optimal inductive inference is a distribution
over concepts (the posterior), which is computed by multiplying
the prior and the likelihood for each potential concept, and then
normalizing over the hypothesis space. However, a combinatorial
hypothesis space may contain too many hypotheses for complete
enumeration to be tractable. A solution to this problem is to
randomly sample hypotheses from the posterior and approximate
the distribution with a histogram—this is the basis of Monte
Carlo methods (Robert & Casella, 2004). By limiting the number of
samples, a learner can trade off cognitive resources with accuracy:
A larger number of samples consumes more cognitive resources
(in terms of memory and processing time) while producing
a more accurate approximation of the posterior. As we show
experimentally, reducing the availability of cognitive resources has
deleterious effects on the accuracy of the posterior.

One challenge for practical applications ofMonte Carlomethods
is that we cannot easily sample from the posterior. To surmount
this challenge, we can instead sample from a proposal distribution
(e.g., the prior) and then weight the samples to correct for the
fact that they were generated from the wrong distribution. When
the number of samples is small and the proposal distribution is
far from the posterior, this method can lead to degeneracy: a
small number of samples have very large weights and the rest of
the samples are effectively ignored. This means that the effective
sample size is smaller than the number of samples. To remedy this
problem, we can delete conditionally unlikely samples (i.e., those
with smallweights) by resampling: generating a new sample set by
drawing samples with probability proportional to their weights.

A final challenge is that the examples may arrive sequentially,
and it is wasteful to recompute the posterior from scratch after
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