Contents lists available at SciVerse ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

Profit based unit commitment for GENCOs using parallel NACO in a distributed cluster

C. Christopher Columbus*, Sishaj P. Simon

Department of Electrical and Electronics Engineering, National Institute of Technology, Tiruchirapalli, Tamil Nadu, India

ARTICLE INFO

Article history: Received 7 May 2012 Received in revised form 20 September 2012 Accepted 17 November 2012 Available online 16 January 2013

Keywords: Parallel processing Profit based unit commitment Parallel nodal ant colony optimization Parallel artificial bee colony and distributed cluster

ABSTRACT

Deregulation process has created an intense competition with the participation of many generating companies (GENCOs) in a power market. Wholesale transactions (bids and offer) have to be cleared and settled in a shorter duration. Therefore, this necessitates for the system operator to quick and smarter decisions. In this problem formulation, profit based unit commitment (PBUC) problem aims in maximizing the profit of GENCOs. However demand satisfaction is not an obligation. Here, parallel nodal ant colony optimization (PNACO) approach mimicking ant's intelligence is used in the decision on committing generating units. The sub problem economic dispatch (ED) is carried out using parallel artificial bee colony (PABC) approach mimicking foraging behavior of bees. Profit based unit commitment (PBUC) must be obtained in less time even though there is a possible increase in generating units. Nowadays, as computing resources are available in plenty, effective utilization will be advantageous for reducing the time complexity for a large scale power system solution. The proposed approach uses a cluster of computers performing parallel operations in a distributed environment for obtaining the PBUC solution. The time complexity and the solution quality with respect to the number of processors in the cluster are thoroughly investigated. The effectiveness of the proposed approach for PBUC is first validated on a standard 10 unit system available in the literature and then analysis for computational efficiency using 1000 generating units, which is a duplicate form of standard 10 unit system.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In the deregulated electricity power market, optimal economic operation and planning of electric power generation has always occupied an important position. The traditional unit commitment problem (UCP) generally focuses on committing the ON/OFF status of the generating units and optimally allocates the generation of power for the ON generating units [1,2]. The optimal allocation is obtained by solving the economic dispatch (ED) problem, which can be categorized as a sub problem of the UCP. This operation is to minimize total generation cost in a specified time zone (usually 24 h) [3,4]. However, the profit based unit commitment (PBUC) problem is generally solved by the GENCOs in a deregulated power market. The operation involves maximizing solely the GENCOs profit, where demand satisfaction is not an obligation.

In deregulated markets, generation companies (GENCOs) are usually entities owning generation resources and participating in the market without concern of the system unless there is an incentive for it. Hence, GENCOs consider generation planning for a period of, say 24 h in advance, based on the price forecast, generation unit characteristics, unit availability etc., and thereby determine the bidding strategy for each bidding period of the next day. To excel in the competition, GENCOs will acquire additional generating units with flexible operating capability which allows a timely response to the continuous changes in power system conditions. In the deregulated market, independent system operator (ISO) forecasts the demand and the price for the next day/ hour. The GENCOs will send its bidding to the ISO, depending upon the demand and its generator coefficients. The ISO will accept and select the bidder whose price is less than or equal to its forecasted price. If the bidder's price is more than the forecasted one, then ISO will fix the forecasted price as the market clearing price (MCP). If any of the GENCOs fix the price below the forecasted price, the ISO will fix the lowest price as MCP.

1.1. Literature survey for solution techniques

The profit based unit commitment (PBUC) problem is a mixed integer and continuous nonlinear optimization problem, which is very complex to solve because of its enormous dimensions, nonlinearity and large number of constraints. Eric H. Allen first

^{*} Corresponding author. Tel.: +91 0431 2513298; fax: +91 0431 2500133. *E-mail addresses:* christoccc@gmail.com (C. Christopher Columbus), sishajpsimon@nitt.edu (S.P. Simon).

^{2210-6502/\$ -} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.swevo.2012.11.005

Nomenclature				total cost (\$)
			W	processor or worker
	AvgP	average of maximum profit (\$) obtained in 10	W_h	number of processors in c
	U	simulations	W_t	execution time of one pro
	D_t	total system demand at time t	W_{ht}	execution time of a cluste
	E	all states that are eligible at time t		"on" duration of <i>i</i> th gener
	EW_h	efficiency of a cluster	$X^{off}(i,t)$	"off" duration of <i>i</i> th gener
	fit _p	fitness value of the solution <i>p</i>	<i>x</i> _{qmin} and	x_{qmax} the minimum and
	L_{gb}	maximum total profit incurred till the current tour		parameter to be optimized
	Ň	total number of generating units	C_i	production cost (\$) $C_i(P_{(i,t)})$
	п	number of units in each node	а	cost co-efficient of ith gen

i	index for generator unit
Nants	total number of ants
Ne	number of food sources which is equal to the number
	of employed bees n_e
D	nower level of ith generator unit at the hour (MW)

power level of $P_{(i,t)}$ commitment $I_{(i,t)}$

maxiter maximum nu

$P_{i,min}$	minimum power output of <i>i</i> th generator unit (MW
.,	maximum power output of <i>i</i> th generator unit (MW
P _{i,max}	
PF	total profit (\$)
$Pr_{rs}^k(st)$	transition probability of <i>k</i> th ant from state <i>r</i> to <i>s</i>
RV	total revenue (\$)
ST_t	startup cost (\$)
SW_h	speedup factor for a cluster
TS	total number of states
t	index for time
$T^{on}(i)$	minimum up-time of <i>i</i> th generator unit
$T^{off}(i)$	minimum down-time of <i>i</i> th generator unit
Т	dispatch period in hours

HC_i hot cost of the *i*th generator (\$/h)cool cost of the *i*th generator (\$/h) CC_i Tcold permissible cool hour of the *i*th generator (h) Ini-state initial status of the *i*th generator proposed the price based decision mechanism for GENCOs to of solving the Profit Based Unit Commitment (PBUC) problem. schedule their reserve based on spot market power [5]. The Here, the PBUC problem is solved by the proposed approach in Lagrange Relaxation method can provide a fast solution by two stages. Initially, information concerning committed units is properly adjusting the Lagrangian multiplier [6,7]. But if the

limit count

problem is a non-convex, then it suffers from numerical convergence. In LR gradient method this problem is eliminated. However, the solution obtained from gradient-based method suffers from getting local optimum solutions. In order to overcome these complex mathematical problems, there are other methods of computational methodologies shared by popular intelligent systems such as genetic algorithm and evolutionary programming. Charles W. Richter et al. presented a PBUC formulation using genetic algorithm (GA) which considers the softer demand constraints and allocates fixed and transitional costs to the scheduled hours [8].

Pathom Attaviriyanupap et al. proposed a Hybrid LR-EP to solve profit based unit commitment for scheduling both power and reserve simultaneously [9]. However, the reserve is scheduled based on reserve probability value. Here, evolutionary programming (EP) is used for the proper adjustment of lagrangian multiplier. H.Y. Yamin et al. proposed an auxiliary hybrid model using LR and GA to solve UC [10]. Here, GA is used to update the Lagrangian multiplier. T.A.A. Victoire et al. proposed Tabu-search based heuristic technique to solve PBUCP involving both energy and reserve schedule [11]. Here, for different values of reserve probability, the variations of energy and reserve schedules are observed in terms of profit. A mixed integer programming method which provided better solution than LR method is proposed by Tao Li and et al. [12]. This approach took higher computation time for convergence.

In [13], Chandram et al. proposed an Improved Pre-prepared Power Demand (IPPD) table and the Muller's method as a means

obtained by the IPPD table and then the sub problem of Economic Dispatch (ED) is solved using the Muller's method. In [14], variable neighborhood Tabu search parallel enhanced particle swarm optimization with island model (VTS-PEPSO) is used to solve the PBUC problem. Christopher et al. implemented parallel artificial bee colony algorithm (PABC) for solving PBUC problem using parallel computation [15]. Though the computational time taken has reduced, the accuracy of the solution could have been improved. They had also applied nodal ant colony optimization (NACO) for solving PBUC [16] and found that the convergence of getting near optimal solution is encouraging. However, the inherent limitation is the computation time. Therefore, considering the strength and weakness of ACO [16-21] and ABC [3,15,22–24], this paper focuses on suitably combining both ACO and ABC solving PBUC in the parallel environment. Here, ACO is used to get the discrete status of the generating units and ABC is used to solve economic dispatch sub problem producing the optimal dispatch of the committed generating units.

random number between [-1, 1]

2. Proposed work

ACO is an intelligent optimization algorithm that searches the optimal solution mimicking real ants [17,18]. Existing literatures [16–21] prove ant colony optimization (ACO) techniques are found to be competent in solving combinatorial optimization problems. It is on this basis that ACO is suitable for PBUC which is also hard combinatorial in nature. An analogy can be drawn between ants finding the shortest path from source (nest) to its

	TC	total cost (\$)
	W	processor or worker
maximum profit (\$) obtained in 10	W_h	number of processors in cluster
	W_t	execution time of one processor
demand at time t	W_{ht}	execution time of a cluster
at are eligible at time <i>t</i>		"on" duration of <i>i</i> th generator unit till time
a cluster	$X^{off}(i,t)$	"off" duration of <i>i</i> th generator unit till time <i>t</i>
e of the solution <i>p</i>	$x_{q\min}$ and	x_{qmax} the minimum and maximum limits of the
otal profit incurred till the current tour		parameter to be optimized.
er of generating units	C_i	production cost (\$) $C_i(P_{(i,t)}) = a + b \times P_{(i,t)} + c \times P_{(i,t)}^2$
inits in each node	а	cost co-efficient of <i>i</i> th generator unit (\$/h)
nerator unit	b	cost co-efficient of <i>i</i> th generator unit (\$/MW h)
er of ants	С	cost co-efficient of <i>i</i> th generator unit(\$/MW ² h)
ood sources which is equal to the number	Α	relative importance pheromone trail intensity
l bees n _e	В	relative importance of heuristic function
of <i>i</i> th generator unit at <i>t</i> th hour (MW)	С	constant
t state of <i>i</i> th unit at <i>t</i> th hour	ho	evaporation factor
number of iterations	σ_g	forecasted market price for energy at time t
ower output of <i>i</i> th generator unit (MW)	σ_n	forecasted market price for non-spinning reserve at
ower output of <i>i</i> th generator unit (MW)		time t
(\$)	σ_r	forecasted market price for spinning reserve at time <i>t</i>
robability of <i>k</i> th ant from state <i>r</i> to <i>s</i>	$\tau_{rs}(st)$	pheromone trail intensity of state (st) r to s
e (\$)	η_{rs}	(st) Heuristic function of state (st) r to s
(\$)	$\Delta \tau_{rs}$	change in pheromone deposition

 ϕ_{pq} LC

Download English Version:

https://daneshyari.com/en/article/493869

Download Persian Version:

https://daneshyari.com/article/493869

Daneshyari.com