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a b s t r a c t

Graphs in computer science are widely used in social network analysis, computer networks, transporta-
tion networks, and many other areas. In general, they can visualize relationships between objects.
However, fast drawing of graphs and other structures containing large numbers of data points with
readable layouts is still a challenge. This paper describes a novel variant of the Fruchterman–Reingold
graph layout algorithm which is adapted to GPU parallel architecture. A new approach based on space-
filling curves and a new way of repulsive forces computation on GPU are described. The paper contains
both performance and quality tests of the new algorithm.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graphs can bring a new view of the data structure and
relationships between its elements. They can visualize some
additional information, e.g. clusters, that are hidden by default.
However, graphs become more complex and unreadable with a
growing amount of data and it is evident that a naive visualization
of complex graphs leads to loss of information, e.g. the user can
see just a clutter of nodes and edges. Some layout algorithm must
be used to provide a readable form of the graph structure. The
main disadvantage of using layout algorithms lies in the additional
computation time, which can be very long in the case of a large
amount of data. Fast graph drawing with a readable layout is still a
challenge [1]. For example, it is practically impossible to visualize
large social networks [2] like Facebook and Twitter. and illustrate
the dynamic of such networks. The same holds true for the
visualization of WWW pages connected by links), computer net-
works [3], or protein similarity [4], or even visualizing large
quantities of particles in Particle Swarm Optimization [5], ants
during Ant Colony Optimization [6], genes in Genetic Algorithms
[7], etc.

Several layout algorithms exist [8–10] that can be used to
create an acceptable graph visualization. Usually, more layout

algorithms can be applied on the same graph to provide variants
for the readers. The layout should ideally help the reader to better
understand the information contained in the graph. Several
aesthetic techniques or metrics like edge crossing, line bends,
symmetry, minimum angle or orthogonality are presented in [11].
Ref. [12] shows which of the aesthetic criteria have the greatest
influence for human understanding. Note that for some graphs,
even if one layout has no edge crossings, a different layout with
more crossings may be considered as a better one (showed in [8]).
The more aesthetic criteria are required, the more computation
time is usually needed.

The paper is organized as follows. Section 2 presents the
related work. In Section 3 the nearest neighbors (NN), space-
filling curves (SFCs), graph layout problem and Fruchterman-
Reingold (FR) algorithm are described. In Section 4, the proposed
algorithm is discussed as well as the obtained speed-up in the final
implementation. Finally, the last section summarizes the perfor-
mance and quality of the results and experiments.

2. Related work

Some of the graph layout algorithms represent a class of the so-
called force-directed layouts, e.g. Fruchterman–Reingold [9] or
Kamada–Kawai [8]. These algorithms iteratively change the posi-
tions of vertices/nodes to reduce a defined energy function, also
called the temperature T. These layouts are generally considered to
be aesthetic. The problem related to the usage of the force-
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directed algorithms is that in general they are computationally
expensive. The paper [2] describes the speed-up of the Fruchter-
man–Reingold by computing the most expensive part on GPU.

Our research focused on the method of finding the nearest
neighbors for every vertex to achieve more effective computation.
Thus the solution of the nearest neighbors problem described for
example in [13,14] became the primary goal of our research. One
of the fast methods for nearest neighbors searching is based on the
space-filling curves. The space-filling curves used in the graph
layout can be found in [15], where a new approach dealing with
dense graphs was presented. Moreover, searching for new layout
algorithm leads to the consequent challenge that consists of
comparison techniques. When a new layout algorithm is found,
the natural question is how to compare it with others. Ref. [11]
shows several quality measurements for graph layouts. Next, in
[12], quality measurements were studied from the point of view of
human reading.

3. Background of the suggested visualization

In this section a selected space-filling curve is briefly described
with primary focus on the problem of computation of graph
vertices/nodes coordinates. Also the Fruchterman–Reingold algo-
rithm is mentioned.

3.1. Nearest neighbors and space-filling curves

Space-filling curves (SFCs) were used in order to get the nearest
neighbors, because they can be computed very fast in parallel way.
Several variants exist such as Peano, Z-order or Hilbert space-
filling curve [16–18] (Fig. 1).

Note that SFCs are very inaccurate in classifying nearest
neighbors. Generally, SFCs connect the points that are close to
each other and thus transform the n-dimensional problem into
one dimensional (1D). Unfortunately, many points should be
considered as nearest neighbors but ultimately they are far from
each other on the SFC. On the other hand, some vertices lie very
close together on the curve but in reality they are far away. The
mentioned disadvantage is balanced with the fact that the SFC can
be computed very easily and in parallel. It requires just computing
a single index for each point ðΘðNÞÞ and then reordering such
indices, e.g. with quick-sort or with parallel radix sort using CUDA.
An example of Z-order SFC can be seen in Fig. 2.

3.2. Graph layout and Fruchterman–Reingold

Let a graph G’ðV ; EÞ be a set of vertices V and edges E that
connects those vertices. One of the well known algorithms for the
graph layout is the Fruchterman–Reingold, which belongs to the
family of force-directed graph layout algorithms. Vertices con-
nected by an edge attract each other. It also defines an ideal
distance for each vertex. The vertices should be drawn near each
other, but not too close. To lay out a graph, the vertices are
replaced by steel ring and each edge with a spring mechanical
system [9]. The complete algorithm is shown below:

area’ W n L {width and length of the frame}
G’ðV ; EÞ {random initial positions for the vertices}
k’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
area=jV j

p

function FaðzÞ’ {return x2=k}

function FrðzÞ’ {return k2=z}
for i’1 to iterations do
{calculate repulsive forces}
for all vAV do

{each vertex has two vectors: .pos and .disp}
v:disp’ 0

for all uAV do
if uav then

{Δ is short hand for the difference}
{vector between positions of the two vertices}
Δ’v:pos�u:pos
v:disp’v:disp�ðΔ=jΔj ÞnFrðjΔj Þ

end if
end for
end for
{calculate attractive forces}
for all eAE do

{each edge is an ordered pair of vertices .v and .u}
Δ’e:v:pos�e:u:pos
e:v:disp’e:v:disp�ðΔ=jΔj ÞnFaðjΔj Þ
e:u:disp’e:u:disp�ðΔ=jΔj ÞnFaðjΔj Þ

end for
{limit the max displacement to the temperature T}
{and then prevent from being displaced outside frame}
for all vAV doFig. 1. Example of Z-order space-filling curve.
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Fig. 2. 8 vertices (A, B, C, D, E, F, G, H) randomly placed and ordered by Z-order
space-filling curve.
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