
Regular Paper

Opposition-based Magnetic Optimization Algorithm with parameter
adaptation strategy

Mahdi Aziz a,n, Mohammad-H. Tayarani-N. b

a Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Vali Asr St., Iran
b Department of Electrical and Computer Science, University of Birmingham, Birmingham, UK

a r t i c l e i n f o

Article history:
Received 7 December 2014
Received in revised form
16 July 2015
Accepted 3 September 2015
Available online 16 September 2015

Keywords:
Parameter adaptation strategy
Opposition-Based Learning
Magnetic Optimization Algorithm
Numerical optimization problems

a b s t r a c t

Magnetic Optimization Algorithm (MOA) has emerged as a promising optimization algorithm that is
inspired by the principles of magnetic field theory. In this paper we improve the performance of
the algorithm in two aspects. First an Opposition-Based Learning (OBL) approach is proposed
for the algorithm which is applied to the movement operator of the algorithm. Second, by learning from
the algorithm's past experience, an adaptive parameter control strategy which dynamically sets the
parameters of the algorithm during the optimization is proposed. To show the significance of the pro-
posed parameter adaptation strategy, we compare the algorithmwith two well-known parameter setting
techniques on a number of benchmark problems. The results indicate that although the proposed
algorithm with the adaptation strategy does not require to set the parameters of the algorithm prior to
the optimization process, it outperforms MOAwith other parameter setting strategies in most large-scale
optimization problems. We also study the algorithm while employing the OBL by comparing it with the
original version of MOA. Furthermore, the proposed algorithm is tested and compared with seven tra-
ditional population-based algorithms and eight state-of-the-art optimization algorithms. The compar-
isons demonstrate that the proposed algorithm outperforms the traditional algorithms in most bench-
mark problems, and its results is comparative to those obtained by the state-of-the-art algorithms.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Inspired by the principles of attraction among magnetic parti-
cles, MOA is a population based algorithm that belongs to the
group of swarm intelligence algorithms. In MOA, the candidate
solutions are some magnetic particles that are scattered across the
search space. In this respect, each magnetic particle has a measure
of mass and magnetic field according to its fitness. In this scheme,
the fitter magnetic particles have higher magnetic field and
greater mass. In terms of interaction, these particles are located in
a lattice-like population and apply a long range force of attraction
to their neighbors. Unlike Particle Swarm Optimization (PSO)
algorithm in which each particle utilizes only the best experience
of the best neighboring particle(s) or the best particle in the
population, in MOA each magnetic particle uses the best experi-
ence of all its neighboring particles, including the inferior ones. In
order to improve the performance of the algorithm, an OBL [1]
approach is proposed in this paper in which by calculating the
opposite population of the current population at each iteration,
the algorithm tries to find fitter solutions. OBL has been used to

solve many optimization problems [2–4] and has been employed
in several population based algorithms [5–9].

MOA has shown promising results when applied to numerical
benchmark functions [10,11] and to a wide range of optimization
problem including travelling salesman problem [12] and multi-
layer perception training [13]. Similar to other population based
algorithms, the performance of the MOA depends on appropriately
setting its parameters [10,11]. Although there is a systematic way
of setting the parameters of MOA [10,11], it is computationally
expensive. The parameter setting technique [14,10,15,16] provides
appropriate values for control parameters; however, the algorithm
designer needs to set the control parameters for each problem
prior to the search process.

To improve the performance of the algorithm in this aspect,
several parameter setting approaches have recently been proposed.
The F-Race algorithm firstly proposed for tackling the model
selection problem [17] is among them. The algorithm is an auto-
matic parameter configuration algorithm that was firstly used by
[18] to automatically set the parameters of Ant Colony algorithm.
Then a new version of the algorithm called iterated F-Race was
utilized in some optimization algorithms [19–21]. Iterated F-Race
determines the most appropriate parameter configuration of an
algorithm using the non-parametric Friedman's two-way analysis of

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/swevo

Swarm and Evolutionary Computation

http://dx.doi.org/10.1016/j.swevo.2015.09.001
2210-6502/& 2015 Elsevier B.V. All rights reserved.

n Corresponding author. Tel.: þ98 9156523782.

Swarm and Evolutionary Computation 26 (2016) 97–119

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2015.09.001
http://dx.doi.org/10.1016/j.swevo.2015.09.001
http://dx.doi.org/10.1016/j.swevo.2015.09.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2015.09.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2015.09.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2015.09.001&domain=pdf
http://dx.doi.org/10.1016/j.swevo.2015.09.001


variance by ranks. Acting like a hill climbing stochastic procedure,
iterated F-Race performs a few race among the candidate config-
urations on a stream of instances in order to find the best candidate
configuration. First a set of configurations with uniform random
values are initialized. Then, at each iteration, all configurations are
evaluated according to Friedman test. If the first Friedman test
shows that at least one configuration is significantly different from
any other configurations in the race, the second Friedman test is
applied to eliminate the candidates that are remarkably worse than
other configurations. The race proceeds with the surviving config-
urations and continues until only one candidate configuration
remains in the race or the certain number of iteration is reached.
Although the method is successful in setting parameters of algo-
rithms, specially when an algorithm has a number of parameters
[19,21], it can be prohibitively expensive for large-scale optimiza-
tion problems.

Using the feedback received from the search process, para-
meter adaptation techniques adjust the parameters of algorithms
adaptively. According to [22–24], depending on how the received
feedback is used, there are three major types of parameter setting
strategies: deterministic parameter control, self-adaptive para-
meter control and adaptive parameter control. The deterministic
parameter setting approaches are those that do not receive any
feedback from the optimization process and set their parameters
prior to the search process via trial and error. The original version
of MOA is an example of this type of strategy. Self-adaptive
parameter setting strategy attempts to evolutionarily adjust the
parameters of algorithms; to do so, they often adopt recombina-
tion operators such as mutation and crossover to select the opti-
mal parameter configuration. This approach has shown remark-
able success in iteratively making the individuals more adapted to
the problems. For example, reference [25] proposed a new Dif-
ferential Evolution (DE) algorithm that uses a self-adaptive para-
meter strategy for the population size, mutation rate and crossover
rate. The parameter adaptation strategy refers to the parameter
setting, which uses feedback received from the search process to
dynamically set the parameters of the problem. Several state-of-
the-art algorithms such as JADE [22], SaDE [26], jDE [27] and
Memetic algorithm with adaptive local search [28] can be cate-
gorized into this group. The proposed algorithm, which dynami-
cally adjusts its control parameters in the course of the optimi-
zation, also belongs to this category.

Being adaptable to the properties of the problem usually
enhances the ability of algorithms to find good parameters with-
out spending time on the trial and error parameter setting pro-
cedure. Therefore, parameter adaptation strategy can help the
algorithm discover a good parameter value while enhancing the
convergence performance. JADE as one of the powerful DE algo-
rithms that employs the parameter adaptation strategy showed
remarkable success in tackling several small-scale optimization
problems [22]. JADE has two control parameters that sets them
adaptively. In this paper, we develop the idea used in JADE for
adaptively setting the control parameters of the proposed algo-
rithm. The difference between the proposed algorithm and JADE is
that our algorithm optimizes the control parameters individually.
When the control parameters are investigated and set together
(similar to JADE), they may not provide high-quality results for
large-scale benchmark problems. This is because it cannot be
ensured which parameter is responsible for improving the quality
of the solution and so unnecessary changes in the value of a
parameter may occur. Instead, if separately evaluated and set, the
parameters can be more appropriately adjusted which results in
better performance.

The contribution of this paper is summarized into the following
aspects:

� A new version of MOA using a run-time adaptation strategy for
dynamically setting the parameters of the algorithm is
proposed.

� A new approach that is based on the opposite number principle
is developed and added to the algorithm to improve its
performance.

� The proposed parameter adaptation strategy is compared with
two famous parameter setting techniques including systematic
parameter setting and F-Race algorithm.

� A set of most powerful optimizers including Genetic Algorithm
(GA) [29], PSO [30], DE [31], Evolution Strategy (ES) [32], Fast
Evolution Strategy (FES) [33], Evolutionary programming (EP)
[34] and Fast Evolutionary Programming (FEP) [35], Memetic
Algorithm with Solis Wet local search (MASW) [36], Memetic
Algorithm with Subgrouping Solis Wet local search (MASSW)
[36], Cooperatively Coevolving Particle Swarms Optimization
(CCPSO2) [37], JADE [22], Three Stages Memetic Exploration
(3SOME) [38], Parallel Memetic Structure (PMS) [39], Biogeo-
graphy Based Optimization (BBO) [40], Opposition-based Differ-
ential Evolution (ODE) [41] and Covariance Matrix Adaptation
Evolution Strategy (CMAES) [42] are used to be compared with
the proposed algorithm on 27 standard benchmark functions.

The rest of this paper is organized as follows. Section 2 discusses
the background of the proposed algorithm, including the OBL and
the original version of MOA. Section 3 introduces the proposed
algorithm. Section 4 evaluates the proposed parameter adaptation
strategy, by studying the control parameters and comparing the
proposed strategy with two well-known strategies. Section 5 pro-
vides a comparison between the proposed algorithm and the ori-
ginal version of MOA, seven popular population-based and nine
state-of-the-art algorithms. Section 6 concludes this paper.

2. Background

In this section, a general overview of the key components of the
proposed algorithm is presented, concentrating on the Opposition-
Based Learning scheme and the original version of MOA.

2.1. Opposition-Based Learning

Population-based algorithms often initialize the population
randomly, thus the chance of sampling better regions in the search
space is not higher. However, there are several ways to enhance
the probability of detecting better regions. One is Opposition-
Based Learning (OBL). By employing OBL at the initialization phase
of algorithms, the likelihood of finding better solutions increases.
Furthermore, an algorithm can employ the OBL approach during
its search process to increase its chances of finding better solutions
[41].

The concept of OBL was proposed by Tizhoosh in [1]. In this
paper, we first explain the concept of opposition numbers. Let xA
½a; b� be a real number, then the opposite number �x is defined as

�x ¼ aþb�x:

The definition can be extended to an N-dimensional search space
[1] as follows. Let P ¼ ðx1; x2;…; xNÞ represent a point in an N-
dimensional space. The opposition vector in this space is defined
as

�xi ¼ aiþbi�xi:

Heretofore, the OBL has extensively been used to solve many
optimization problems [2–4] and has been employed in several
population-based algorithms [41,6,7,9]. This encouraged us to
employ the method in MOA to speed up the convergence speed

M. Aziz, M.-H. Tayarani-N. / Swarm and Evolutionary Computation 26 (2016) 97–11998



Download English Version:

https://daneshyari.com/en/article/493923

Download Persian Version:

https://daneshyari.com/article/493923

Daneshyari.com

https://daneshyari.com/en/article/493923
https://daneshyari.com/article/493923
https://daneshyari.com

