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a b s t r a c t

This paper presents a multilevel ant colony optimization (MLACO) approach to solve constrained forest
transportation planning problems (CFTPPs). A graph coarsening technique is used to coarsen a network
representing the problem into a set of increasingly coarser level problems. Then, a customized ant colony
optimization (ACO) algorithm is designed to solve the CFTPP from coarser to finer level problems. The
parameters of the ACO algorithm are automatically configured by evaluating a parameter combination
domain through each level of the problem. The solution obtained by the ACO for the coarser level
problems is projected into finer level problem components, which are used to help the ACO search for
finer level solutions. The MLACO was tested on 20 CFTPPs and solutions were compared to those
obtained from other approaches including a mixed integer programming (MIP) solver, a parameter
iterative local search (ParamILS) method, and an exhaustive ACO parameter search method. Experi-
mental results showed that the MLACO approach was able to match solution qualities and reduce
computing time significantly compared to the tested approaches.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Forest transportation planning problems (FTPPs) are a special
case of the fixed-charge transportation problems (FCTPs), which
have received significant attention from operations research and
management science [20,27]. Traditionally, FTPPs are formulated
as a MIP models and solved optimally using branch-bound
methods [3]. However, the computational costs of these methods
increase exponentially with the problem size as FCTPs are known
to be NP-hard [28,13]. To efficiently solve large-scale CFTPP,
metaheuristics such as simulated annealing [2], genetic algorithm
[1,16] have also been applied. For example, Contreras et al. [5]
applied for the first time an ACO algorithm [7,4] to solve medium-
scale FTPPs. Lin et al. [23,24] developed an improved version of the
ACO algorithm to address specific FTPPs: a CFTPP and a bi-
objective FTPP, respectively. Although the improved results in
terms of computing time and solution quality were obtained in the
experiments, solving large scale CFTPPs remains difficult because
they require significantly long computing times. Moreover, the

performance of the ACO algorithm is highly dependent on their
parameter settings [23,10].

As a general solution strategy, multilevel schemes have been used
for many years and applied to several problem areas [11,18,21,26,17]
where solution quality can benefit from having a relatively high-
quality initial solution that can be computed inexpensively on a lower
level scale. These schemes have proven to be efficient when solving
discrete NP-hard problems with a finite but exponential number of
problem component combinations [30,19,29]. One recent example of
using a multilevel approach to solve related transportation problems is
[25] where Lin et al. developed a multilevel parameter configuration
scheme and an ACO was the target algorithm configured from the
coarsest to the finest level problem. Based on this previous study, we
present the design, implementation, and testing of a multilevel ACO
approach (MLACO) to solve large-scale CFTPPs with reduced com-
puting times. The essential idea is to solve the original problem, which
might be computationally expensive, using a set of increasingly coar-
ser level problems on which the computational cost is cheaper. The
main objective of this study is to demonstrate that, for the problem
instances tested, the MLACO approach can either accelerate solution
convergence rate or improve solution quality. We also examined the
underlying process driving performance improvements compared to
the other methods, identify advantages and limitations of the
approach, and suggest how it might be applied to other optimization

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/swevo

Swarm and Evolutionary Computation

http://dx.doi.org/10.1016/j.swevo.2016.01.003
2210-6502/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail addresses: linp@uwstout.edu (P. Lin),

marco.contreras@uky.edu (M.A. Contreras), ruxin.dai@uwrf.edu (R. Dai),
jzhang@cs.uky.edu (J. Zhang).

Swarm and Evolutionary Computation 28 (2016) 78–87

www.sciencedirect.com/science/journal/22106502
www.elsevier.com/locate/swevo
http://dx.doi.org/10.1016/j.swevo.2016.01.003
http://dx.doi.org/10.1016/j.swevo.2016.01.003
http://dx.doi.org/10.1016/j.swevo.2016.01.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2016.01.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2016.01.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2016.01.003&domain=pdf
mailto:linp@uwstout.edu
mailto:marco.contreras@uky.edu
mailto:ruxin.dai@uwrf.edu
mailto:jzhang@cs.uky.edu
http://dx.doi.org/10.1016/j.swevo.2016.01.003


problems. Ultimately, the MLACO approach presented in this study can
serve as a framework for solving large-scale CFTPPs and provide
managers with environment-friendly road network alternatives to
help them make informed decisions.

2. Preliminary

2.1. Contained forest transportation planning problem (CFTPP)

The CFTPP considered in this study is the problem of finding the
set of least-cost routes from timber sale locations to designated mill
destinations while reducing the negative environmental impacts
associated with timber transportation [5]. Sediments expected to
erode from road surfaces due to the traffic of heavy log-trucks were
considered as the problem constraints. Conceptually, the CFTPP can be
modeled as a network comprised of a set of nodes V and edges E
representing road intersections and segments, respectively. Three
attributes associated to each edge in the network are: fixed cost
ðFixed_CostÞ, variable cost ðVar_CostÞ, and sediment amount (Sed).
Fixed_Cost is a one-time road construction cost ($) and/or main-
tenance cost, Var_Cost represents hauling cost ($) per unit of timber
volume, and Sed (tons/year) represents the amount of sediments that
are detrimental to the forest ecosystem. To formulate the CFTPP
objective function, let S¼ fs1;…; smg be the set of timber locations and
M¼ fm1;…;mng the set of mill destinations, where S;M� V . Each
timber sale siAS has a minimumvolume of timber to be delivered at a
given period to a designated mill mjAM. The main objective can be
defined as a cost minimization function:

Minimize :
X
E

Var_Costi;j � Voli;jþFixed_Costi;j ð1Þ

where Var_Costi;j is the variable cost, Fixed_Costi;j the fixed cost, and
Voli;j the total timber volume transported from node i to j (Voli;j ¼ 0 if
the road segment ij is not used). Also, the total timber volumes
arriving at mills must agree with the total timber volumes shipped out
from the timber sales:

Xm
i ¼ 1

Volsi ¼
Xn
j ¼ 1

Volmj ð2Þ

and the amount of sediment eroding from the entire transportation
network must not exceed a maximum allowable value:

Constraint :
X
E

Sedi;jrSedmax: ð3Þ

where Sedmax is the maximum sediment threshold. The equality (2)
and the inequality (3) are the constrains in addition to minimizing the
objective function (1) to determine the optimal solution for the CFTPP.
A detailed description of CFTPPs can be found in [5,23,24].

2.2. Ant colony optimization

ACO was developed in the mid 1990s to solve the traveling sales-
man problem [9,8]. The algorithm was inspired by ant foraging
behavior. When searching for food, ants walking to and from a food
source deposit a substance called pheromone on the ground. Other
ants can perceive the presence of the pheromone and tend to follow
paths where pheromone concentrations are higher.

In the ACO algorithm to findminimum routes, a set of artificial ants
are placed at origin locations andmove through adjacent locations one
at a time towards the destinations. Guided by the pheromone values,
artificial ants construct routes simultaneously. Let C be a set of all
possible locations, an ant placed at location x chooses what location y
to visit next according to a transition probability:

Pt
x;y ¼

T α
x;y � ηβx;yP

kANbr
T α

x;k � ηβx;k
if yAcities

0 Otherwise

8>>><
>>>:

where x; yAC, Pt
x;y is the probability of ant t moving from x to y, kA

Nbr represents one of unvisited locations adjacent to x, τ is the pher-
omone intensity on the path connecting two locations, η is the visibility
(typically calculated as the inverse to the distance between the two
locations) α and β are positive parameters that control the relative
importance of pheromone intensity versus visibility. The pheromone
intensity τ is updated iteratively using the following formula:

T x;y’ρ� T x;yþΔT x;y;

where ρ is the pheromone persistence rate andΔτx;y is the amount of
pheromone to be added to path (x,y). For a more detailed description of
ACO algorithm, see [7].

2.3. Multilevel scheme

Typically, a multilevel scheme solves a large problem using a
set of increasingly smaller problems through a sequence of solu-
tion refinements [25]. These smaller problems are obtained by
successively applying a coarsening process to the original problem.
As a result, a hierarchy of coarser problems are generated where a
given coarser level problem is always smaller than its finer level
problem. The solution obtained for a given coarser level problem
in the solution refinement process is projected into the finer level
problem components which are then used to help search for the
finer level solution. The process is illustrated in Fig. 1 where a finer
problem is coarsened into a coarser problem. After the ACO algo-
rithm is applied to a given coarser problem, the solution is inter-
polated into a set of finer level components that can help the ACO
algorithm find good solutions for the finer level problem.

For clarity, we define the following terms:

Coarser/finer level problems: a set of increasingly coarser level
problems Π ¼ fΠ0;Π1;…;ΠNg where Π0 is the original
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Fig. 1. Diagram illustrating a multilevel scheme at its simplest form (only two levels), where the finer level problem is coarsened into a coarser level problem (left-hand
side). The ACO algorithm solves the coarser level problem first and the obtained solution is used to help find high-quality solutions for the finer level problem (right-
hand side).
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