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a b s t r a c t

Sustainability of the conventional jet fuels and climate change has attracted the aviation sector to
diversity to alternative fuels. However, fuel diversification requires an assessment of the long term
impact to engine performance and engine emissions through the combustion process, as alternative fuels
are not as well understood as conventional jet fuel. A detailed experimental study on alternative fuels
emissions across the entire aircraft fleet is impractical. Therefore a plausible method of computer
modelling combined Genetic Algorithm and Chemical Reactors network was developed to predict
alternative fuels gaseous emissions, namely, Carbon Monoxide, Nitrogen Oxides and Unburned Hydro-
carbons in aircraft engines. To evaluate the feasibility and accuracy of the technique, exhaust emission
measurements were performed on a re-commissioned Artouste Mk113 Auxiliary Power Unit, located at
the University of Sheffield's Low Carbon Combustion Centre. The simulation produced results with good
agreements with the experimental data. The optimised model was used to extrapolate emissions data
from different blends of alternative fuels that did not operate during the campaign. The proposed
technique showed that it can develop a data base of alternative fuels emissions and also act as a guideline
for alternative fuels development.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Conventionally refined jet fuel from crude oil is unlikely to
meet future demand for the aviation sector alone. It is likely that
the aviation industry will need to diversify into the use of alter-
native fuels derived from other fossil fuel feedstocks such as Gas to
Liquid (GTL) and Coal to Liquid (CTL) fuels [1] or fuels with a Life
Cycle Analysis carbon emission lower than conventionally refined
fuel. Fuel diversification requires an assessments of the long term
impact to engine performance and engine emissions through the
combustion process, as fuels derived from these resources are not
as well understood as conventional jet fuel, particularly as
advanced, low emission, combustor designs can be more sensitive
to changes in fuel composition [2]. The large variety of aircraft
engine configurations in use around the world make undertaking a
detailed experimental study on alternative fuels emissions across
the entire aircraft fleet impractical. Computer modelling could
provide a faster assessment than an experimental study since

comparable results can be obtained in a relatively short time
frame. However, detailed simulation of the emissions of specific
combustors by methods such as computation fluid dynamics (CFD)
needs detailed knowledge of the engine combustor. The informa-
tion is often the proprietary design of engine manufacturers.
Therefore, an alternative method to simulate the aviation fleet is
required by using engine performance data and emissions data
from the public domain. These include engine performance and
experimental emissions data from literatures and from the Inter-
national Civil Aviation Organisation (ICAO) engine emissions data
bank [3].

A simulation method called Genetic Algorithm optimised
Chemical Reactors Network (GACRN) [4,5] was developed to tackle
the problem in predicting alternative fuels gaseous emissions of
Carbon Monoxide (CO), Nitrogen Oxides (NOx) and Unburned
Hydrocarbons (UHC) in aircraft engines. The amounts of these
gaseous emissions are regulated by the ICAO during the landing-
take off cycles. Both CO and UHC emissions are at their highest
level while the engine is running on idle and NOx is at its highest
level during full power condition. The focus of this paper is to
further explore this novel emissions predicting technique aimed at
reverse engineering the air splits ratios of a gas turbine combustor
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to predict the gaseous emissions from the combustion of
alternative fuels.

2. Methodology of the Chemical Reactors network

CRN is a technique that connects discrete reactors together to
discretise a non-homogeneous chemical species concentration in a
fixed volume. Gas turbine combustors are designed with air
entrainment at various locations through the combustor which
generates intense turbulence and mixing the reacting gases and
fuel. These combustion reaction taking place in these regions of
high mixing in the combustor are limited by the rate of chemical
reactions, rather than the rate of mixing and can be approximated
by a network of perfectly stirred reactors (PSR). Therefore, the
concentrations of specific chemical species in the PSR are only
governed by the chemical kinetics applied to the model. The
chemical balances in each PSR are determined by initial chemical
concentrations and thermodynamics properties of the PSR volume
such as pressure, temperature and residence time. The Swithen-
bank model [6] was one of the first CRN to be used in simulating
combustion processes in gas turbine engines with a seven reactors
model consisting of PSR and plug flow reactors. The flow rate
distributions were evaluated by the area of the holes and its cor-
responding discharge coefficient. In the vicinity of the air
entrainments, the kinetic energy in the impinging jet is dissipated
in turbulent eddies which result in a high degree of mixing, and
can be modelled using zero dimensional perfectly stirred reactors.
The CRN model can also be defined by using CFD calculations
[7–11]. Integrated CRN and CFD approach has been applied
extensively in evaluating emissions in gas turbine combustors, but
both of the Swithenbank model and the CFD-CRN models require
knowledge of the detailed geometry of engine combustors in
advance of any assessment. Without this information, the CRN
cannot be developed unless an engine is in a design stage. K.Choo
et al. [12] recognised that CFD was too computational costly for
predicting soot emissions of aircraft engines in conceptual designs,
so they developed a combined CRN and empirical equations model
by using polynomial regression methods to apply the data to
the actual operating conditions at the primary combustion zone. In
the case of working with established gas turbine combustors
without the access of the design, a search method that can esti-
mate the flow rates and sizes of reactors by comparing the results
of the network against a set of output criteria is needed, e.g.

calculated and measured emissions data in this respect. A Genetic
Algorithm approach [4,5] was selected as the most suitable
method for this purpose because it is easy to implement without
the need to rearrange the governing equations. This is a self-
contained solution for problems of a black box process rather than
a competition with methods using CFD.

3. What do Genetic Algorithms do?

The concept of GA was originally introduced by John Holland
et al. [13] to simulate the adaptive process of nature in artificial
systems which retains the important mechanisms of nature such
as selection, breeding and mutation. It was then widely adapted
into engineering by Goldberg and Michalewicz [14,15]. It also
found its use in optimising chemical kinetics [16–18] and design of
gas turbine engines [19] where both applications involved large
number of variables to optimise. The GA has an adaptive and self-
guiding yet random behaviour. Practically, the fitness of the cal-
culated results is weighted towards relatively more important
goals because computer models are usually simplified and
research projects are limited by time. Therefore the fitness func-
tion determines the fitness of the results from a weighted solution
map rather than the real solution space. For example, provided
that there are known number of variables and the favourable goals
are big and strong for human being, then the GA will tune the
variables until it finds the right values to build the biggest and the
strongest human. The goals to be met are problems dependent but
since the GA only needs access to the variables, it is easy to
implement by giving it the variable to alter. However, the GA has
no access to the auxiliary information of the system which it only
sees the solution map governed by the variables. A solution
domain can be imagined as a landscape with a lot of peaks and
valleys of different altitudes. If one wants to search for the highest
peak in the entire landscape (global optimum) and searched with
one team, then the chance of finding the highest peak in a limited
time is very small and in most cases it is only realistic to assume
that a local peak (local optimum) will be identified. However, if
one sends multiple teams to search the whole landscape at the
same time, allowing them to communicate (breeding or crossover
of information) with each other and randomly exploring areas for
the whole process, the chance of finding the highest peak will
increase dramatically. In short, the GA searches for optima in
parallel over various locations on the solution map and it gets the

Glossary and Nomenclature

Glossary

CO Carbon Monoxide
NOx Nitrogen Oxides
UHC Unburnt Hydrocarbon
CRN Chemical Reactors Network
PSR Perfectly Stirred Reactor
GA Genetic Algorithms
CFD Computational Fluid Dynamics
APU Auxiliary Power Unit
ICAO International Civil Aviation Organisation

Nomenclature

apunk APU experimental emissions data
calnk Calculated emissions data

hk Specific enthalpies (kJ/kg)
_mi Mass flow rates (kg/s)
vi Volumes (m3)
Qi Heat losses (J)
Wk Molar masses (kg)
Yk Mass fractions
_ωk Molar rates of production

Subscripts

i PSR numbers
n Engine conditions
k Emission numbers
GAS Combustion gases
I Maximum number of PSR
N Maximum number of engine conditions
K Maximum number of emissions
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