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Cargo-bearing unmanned aerial vehicles (UAVs) have tremendous potential to assist 
humans by delivering food, medicine, and other supplies. For time-critical cargo delivery 
tasks, UAVs need to be able to quickly navigate their environments and deliver suspended 
payloads with bounded load displacement. As a constraint balancing task for joint UAV-
suspended load system dynamics, this task poses a challenge. This article presents a 
reinforcement learning approach for aerial cargo delivery tasks in environments with 
static obstacles. We first learn a minimal residual oscillations task policy in obstacle-free 
environments using a specifically designed feature vector for value function approximation 
that allows generalization beyond the training domain. The method works in continuous 
state and discrete action spaces. Since planning for aerial cargo requires very large action 
space (over 106 actions) that is impractical for learning, we define formal conditions for 
a class of robotics problems where learning can occur in a simplified problem space and 
successfully transfer to a broader problem space. Exploiting these guarantees and relying 
on the discrete action space, we learn the swing-free policy in a subspace several orders 
of magnitude smaller, and later develop a method for swing-free trajectory planning along 
a path. As an extension to tasks in environments with static obstacles where the load 
displacement needs to be bounded throughout the trajectory, sampling-based motion 
planning generates collision-free paths. Next, a reinforcement learning agent transforms 
these paths into trajectories that maintain the bound on the load displacement while 
following the collision-free path in a timely manner. We verify the approach both in 
simulation and in experiments on a quadrotor with suspended load and verify the 
method’s safety and feasibility through a demonstration where a quadrotor delivers an 
open container of liquid to a human subject. The contributions of this work are two-fold. 
First, this article presents a solution to a challenging, and vital problem of planning a 
constraint-balancing task for an inherently unstable non-linear system in the presence 
of obstacles. Second, AI and robotics researchers can both benefit from the provided 
theoretical guarantees of system stability on a class of constraint-balancing tasks that occur 
in very large action spaces.
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1. Introduction

Unmanned aerial vehicles (UAVs) show potential for use in remote sensing, transportation, and search and rescue mis-
sions [1]. One such UAV, the quadrotor, is an ideal candidate for autonomous cargo delivery due to its high maneuverability, 
vertical takeoff and landing, single-point hover, and ability to carry loads 50% to 100% of their body weight. For example, 
cargoes may consist of food and supply delivery in disaster struck areas, patient transport, or spacecraft landing. The four 
rotor blades of a quadrotors make them easier to maneuver than helicopters. However, they are still inherently unstable 
systems with complicated non-linear dynamics. The addition of a suspended load further complicates the system’s dynam-
ics, posing a significant control challenge. Planning motions that control the load position is difficult, so automated learning 
methods are necessary for mission safety and success.

Recent research has begun to develop control policies for mini UAVs, including approaches that incorporate learning [1]. 
Learning system dynamics model parametrization has been successful for adaptation to changes in aerodynamics conditions 
and system calibration [2]. Other approaches, such as iterative learning methods for policy development, have been shown 
to be effective for aggressive maneuvers [3]. Another learning method, expectation–maximization, has been applied to the 
problem of quadrotor trajectory tracking with a linear model [4]. Even the task of suspended load delivery has been ad-
dressed for UAVs [5–9]. Our recent work used reinforcement learning (RL) in discrete action spaces to generate swing-free 
trajectories for quadrotors between two pre-defined, obstacle-free waypoints [5]. RL provided several advantages over pre-
vious work with dynamic programming [9]: a single learning phase leading to the generation of multiple trajectories, better 
compensation for accumulated error resulting from model approximation, and lack of knowledge of the detailed system dy-
namics. In this article, we extend the work in [5] through the development of an autonomous agent for aerial cargo delivery 
that works in environments with static obstacles. This method plans and generates trajectories through sampling of the 
environment and the system dynamics. In contrast to work currently under submission [10], which is concerned with com-
putationally efficient continuous action selection and reinforcement learning for systems with high-dimensional continuous 
inputs in obstacle-free spaces, the work presented here delivers fully-automated planning agent for aerial cargo delivery in 
environments with static obstacles that relies on the discrete action space to perform trajectory generation along a collision-
free path. The distinction between discrete and continuous action spaces is important because it is a basis for aerial cargo 
delivery that is both collision-free and with bounded load displacement. Manipulation of a suspended load has been per-
formed with both RL [6] and model predictive control [7]. However, both of these methods require a pre-planned trajectory 
for the load to track and generate input that controls the UAV. They have an implicit assumption of the obstacle-free space 
in the area around the reference trajectory.

To learn control policy for minimizing the load displacement, we rely on approximate value iteration [11] with a specif-
ically designed feature vector for value function approximation. There are two challenges we face. First, the approximate 
value iteration requires a state-space sampling domain to learn the policy. The learning must have sufficient sample-density 
to be successful. To provide sufficient sample-density while learning, we sample in the small state subspace around the goal 
but choose a feature vector that is defined beyond the sampling subspace. The second challenge we face, is that the planning 
for swing-free motion consists of a large action space (over 106 actions). Such a large action space is impractical for learning, 
thus we learn in an action subspace, and plan with the larger action space. Relying on Lyapunov stability theory [12], the 
article contributes sufficient conditions that the Markov decision process (MDP) formulation (system dynamics, action space, 
and state-value function approximation) must meet to ensure the cargo delivery with minimal residual oscillations. Within 
the conditions we are free to change MDP properties as it suits our needs and to transfer learning to compatible MDPs. 
For example, for practicality we learn in a 2-dimensional action subspace and transfer the state-value function approxima-
tion to MDP with a 3-dimensional action space to plan altitude changing trajectories. As another example, we develop a 
novel path-following agent that minimizes the load displacement by action-space adaptation at every planning step. In the 
context of related work in the obstacle-free case [13,14], we transfer to MDPs with state and action supersets and noisy 
dynamics using a behavior transfer function that transfers directly the learned value function approximation to the new 
domain with no further learning. Another approach examined action transfer between the tasks, learned the optimal policy 
and transferred only the most relevant actions from the optimal policy [15]. In obstacle-free spaces, we take the opposite 
approach; to save computational time, we learn a sub-optimal policy on a subset of actions, and transfer it to the expanded 
action space to produce a more refined plan. When planning a path-following trajectory, we work with a most relevant 
subset of the expanded action space. Partial policy learning for fixed start and goal states, manages state space complexity 
by focusing on states that are more likely to be encountered [16]. We are interested in finding minimal residual oscillations 
trajectories from different start states, but we do have a single goal state. Thus, all trajectories will pass near the goal state, 
and we learn the partial policy only in the vicinity of the goal state. Then, we apply the learned policy to an arbitrary start 
state.

Motion planning methods, which define a valid, collision-free path for a robot, are often solved in configuration space 
(Cspace), the space of all configurations. The valid, collision-free path lies in the collision-free portion of Cspace , Cfree . Many 
planning methods work by either learning and approximating the topology of Cspace , e.g., Probabilistic Roadmap Methods 
(PRMs) [17], or by traversing a continuous path in Cfree , e.g., Rapidly-Exploring Random Tree (RRT) and Expansive Space Tree 
(EST) methods [18–20]. One primary difference between PRMs and RRT/EST methods is that PRMs were designed to learn 
Cfree topology once and then use this knowledge to solve multiple planning queries, where RRTs/ESTs expand from a single 
start and/or goal position for a single planning query. PRMs have been modified to work well for complex robotic problems, 
including moving obstacles [21,22], noisily modeled environments (e.g., with sensor) [23], and localization errors [24,25]. 
Also, PRMs have been previously integrated with RL, e.g., a manipulator moving in a dynamic space [26]. In contrast, we 
use the RL agent as a local planner to plan trajectories along a collision-free path obtained with PRMs.
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