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Automated planning and reinforcement learning are characterized by complementary views 
on decision making: the former relies on previous knowledge and computation, while the 
latter on interaction with the world, and experience. Planning allows robots to carry out 
different tasks in the same domain, without the need to acquire knowledge about each 
one of them, but relies strongly on the accuracy of the model. Reinforcement learning, 
on the other hand, does not require previous knowledge, and allows robots to robustly 
adapt to the environment, but often necessitates an infeasible amount of experience. We 
present Domain Approximation for Reinforcement LearnING (DARLING), a method that 
takes advantage of planning to constrain the behavior of the agent to reasonable choices, 
and of reinforcement learning to adapt to the environment, and increase the reliability of 
the decision making process. We demonstrate the effectiveness of the proposed method 
on a service robot, carrying out a variety of tasks in an office building. We find that when 
the robot makes decisions by planning alone on a given model it often fails, and when it 
makes decisions by reinforcement learning alone it often cannot complete its tasks in a 
reasonable amount of time. When employing DARLING, even when seeded with the same 
model that was used for planning alone, however, the robot can quickly learn a behavior 
to carry out all the tasks, improves over time, and adapts to the environment as it changes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

A great deal of work has been carried out in automated planning, and deliberation in general, while the application of 
such work to autonomous agents is much less developed [13]. The deployment of automated planning, especially in robotic 
tasks, faces many challenges, mostly due to high levels of uncertainty, which make completing a plan a significantly more 
difficult task than computing one. While low-level planning, such as navigation or motion planning, is gaining momentum in 
robotics, high-level planning is often avoided altogether. Behaviors are, instead, engineered by programming them directly.

The reason why plans are brittle can ultimately be attributed to imperfections in the models: relevant details over-
looked, dynamics incorrectly represented, or assumptions violated. Nonetheless, making decisions in domains of any interest 
unavoidably involves abstraction and approximation, causing imperfect models to be widespread.
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Execution Monitoring [24] and continual on-line planning [5] deal with unreliable models, but being able to recognize 
and react to failures might not be enough: an intelligent agent should learn from its mistakes and avoid them as much 
as possible in the future. The Reinforcement Learning (RL) [31] paradigm suits perfectly to this scenario, since it is based 
on trial and error, and the agent can have little knowledge about the domain before execution. Reinforcement Learning on 
its own, however, without prior knowledge of the environment, requires an enormous amount of experience. Applying RL 
methods directly is often infeasible in many practical cases, especially involving physical systems such as robots.

We propose to overcome the brittleness of the plans computed on a model through reinforcement learning in the en-
vironment, and to restrict the exploration of the environment through automated reasoning on the model. The resulting 
approach, Domain Approximation for Reinforcement LearnING (DARLING), exploits the synergy of the two methods allowing 
the agent, on the one hand, to relax the requirements on the planner, which can work on a simplified, abstract, represen-
tation of the domain. On the other hand, it allows the agent to take advantage of previous knowledge, for reducing the 
experience required by reinforcement learning. The automated reasoner provides a rational way to constrain the exploration 
and reduce the search space, while reinforcement learning eases the requirements on the accuracy of the model, which 
does not need to incorporate transition probabilities and action costs, even if the agent is in fact acting in a stochastic 
environment.

The main idea behind this work was introduced by Leonetti et al. [16] in the context of Hierarchical Reinforcement 
Learning, where a finite-state controller was induced by reasoning in Linear Temporal Logics (LTL), and used to constrain 
the exploration during a subsequent reinforcement learning phase. This article contributes a new formulation in terms of 
partial policies, an implementation of the planning phase through Answer Set Programming (ASP) instead of model-checking 
on LTL, and a thorough experimental validation conducted in several new domains. The use of ASP allowed us to scale the 
applicability of DARLING to real-world domains. In particular we deployed it to our autonomous mobile robots, carrying out 
and learning several tasks in a real-world office environment (the Gates-Dell Complex at the University of Texas at Austin).

2. Background and notation

This work leverages both reinforcement learning in Markov Decision Processes and automated reasoning in Answer Set 
Programming. In this section we introduce these two formalisms, along with the notation we will use in the rest of the 
article.

2.1. Markov Decision Processes

A Markov Decision Process is a tuple D = 〈S, A, f , r〉 where:

• S is a set of states.
• A is a set of actions. If not differently specified, every action is available in every state. When that is not the case, we 

denote with A(s) the set of actions available in state s ∈ S .
• f : S × A × S → [0, 1] is the transition function. The function f (s, a, s′) = Pr(St+1 = s′|St = s, At = a) is the proba-

bility that the current state changes from s to s′ by executing action a. If f (s, a, s′) = {0, 1} the system is said to be 
deterministic, otherwise it is stochastic.

• r : S × A × S × R → [0, 1] is the reward function. The function r(s, a, s′, g) = Pr(Rt+1 = g|St = s, At = a, St+1 = s′) is 
the probability of getting a reward g for being in state s, executing action a, and reaching state s′ . The reward is said 
to be deterministic if r(s, a, s′, g) = {0, 1} ∀s, s′ ∈ S , a ∈ A, and g ∈ R. If the reward is negative, we will also refer to it 
as a cost.

We consider the system at discrete time steps. Let t ∈ N be the current time, and St be the state at time t . The agent 
interacts with the environment by choosing an action At and perceiving the next state St+1, such that:

St+1 ∼ f (St, At, ·) = Pr(St+1 = s′|St = s, At = a), s, s′ ∈ S and a ∈ A
It also receives a reward Rt+1:

Rt+1 ∼ r(St, At, St+1, ·)
If a state is never left, after it is entered for the first time, it is said to be a terminal or an absorbing state. If s is a terminal 
state then St+1 = s holds almost surely given that St = s. If an MDP has a terminal state it is said to be episodic.

The behavior of the agent is represented as a function π : S × A → [0, 1] called a (stationary) policy, where π(s, a) =
Pr(At = a|St = s) is the probability of selecting action a in state s at time t . If π(s, a) = {0, 1} ∀ s ∈ S and a ∈ A the policy 
is deterministic, in which case we will denote the action chosen by the policy as a = π(s). A policy π and an initial state 
s0 determine a probability distribution over the possible sequences (〈St , At , Rt+1〉, t ≥ 0). Given such a sequence, we define 
the cumulative discounted reward as:

G =
∑
t≥0

γ t Rt+1
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