
Expert Systems With Applications 93 (2018) 134–142 

Contents lists available at ScienceDirect 

Expert Systems With Applications 

journal homepage: www.elsevier.com/locate/eswa 

Global and intrinsic geometric structure emb e dding for unsupervised 

feature selection 

Yuan Wan, Xiaoli Chen 

∗, Jinghui Zhang 

School of Science, Wuhan University of Technology, Wuhan 430070, China 

a r t i c l e i n f o 

Article history: 

Received 14 June 2017 

Revised 14 September 2017 

Accepted 3 October 2017 

Available online 4 October 2017 

Keywords: 

Sparse preserve projection 

Low rank representation 

l 2,1/2 -Matrix norm 

Unsupervised feature selection 

a b s t r a c t 

Dimensionality reduction becomes a significant problem due to the proliferation of high dimensional 

data. Sparse preserving projection (SPP) obtains the intrinsic geometric structure of the data, which con- 

tains natural discriminating information, and avoids the selection of parameters as well. However, SPP 

neglects the global structures since it computes the sparse representation of each data individually. Low 

rank representation (LRR), another commonly used dimensionality reduction method, finds the lowest 

rank representation of all data jointly, and is capable of capturing the global structures of data. Therefore 

in this paper, we propose a method, global and intrinsic geometric structure embedding for unsupervised 

feature selection (GGEFS), by constructing a low-rank-sparse graph. Our GGEFS method contains the loss 

of information, the preservation of structural information and the sparse regularization of projection ma- 

trix, on which we impose l 2,1/2 -matrix norm to select sparser and discriminative features. An effective 

iterative algorithm based on Lagrange Multiplier method is described to solve GGEFS. Extensive experi- 

mental results demonstrate that the proposed algorithm outperform several state-of-the-art unsupervised 

feature selection methods. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

High dimension data is commonly encountered in many appli- 

cable fields, such as data mining ( Agrawal et al., 1999 ), pattern 

recognition ( Yu et al., 2001 ) and biomedical science ( Clarke et al., 

2008 ). Such kinds of data increase storage space, which is in need 

of well-performed hardware, and also introduce noise and redun- 

dancy. So dimensionality reduction becomes an urgent problem. 

Dimension reduction methods are of two main categories, fea- 

ture selection and subspace learning. Feature selection is to select 

the most representative features from the original feature space 

under some certain criteria, and the collection of selected fea- 

tures is a subset of the original features. Different methods of 

subspace learning, however, aim to learn a transformation, which 

maps the original high dimensional feature space into a lower 

dimensional subspace, and thus new features are generated. A 

classical subspace learning method is Principal Component Anal- 

ysis (PCA ( Jiang et al., 2014 )), which retains the variance of the 

data in the maximum extent to get the low dimensional rep- 

resentation of the data from a global perspective. Local struc- 

ture of the data also contains important discriminative informa- 
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tion ( Bottou et al., 1992 ), therefore some dimensionality reduc- 

tion algorithms by different methods of preserving local structure 

are proposed, such as Locality Preserving Projection (LPP ( He & 

Niyogi, 2005 )) and Local Linear Embedding (LLE ( Roweis et al., 

2001 )).The core idea of these local structure preserving methods 

is embedding the neighborhood relationship, that is learned from 

the original data, into the lower dimensional subspace in differ- 

ent ways. Due to the high efficiency of local structure preserva- 

tion of data, these methods are widely used in many feature selec- 

tion methods ( Cai, He, & Han et al, 2010; Zhou et al., 2016 ). Lapla- 

cian Score ( He et al., 2005 ) selects features by evaluating features 

based on LPP, Li et al. (2008) propose discriminative locally linear 

embedding based on LLE. Wang et al.(2016 ) propose neighborhood 

embedding feature selection (NEFS), which learns the sparse rep- 

resentation by considering the nearest neighbors of each sample as 

a dictionary and then embeds the representation into the model of 

feature selection. For such graph-based locality preservation meth- 

ods, there are still some challenges: (1) Using KNN to construct ad- 

jacency graph is not efficient enough to get discriminative informa- 

tion ( Zhu, 2008 ). (2) The parameters of the neighborhood and heat 

kernel width are hard to set. (3) The eigen decomposition of dense 

matrix is time-consuming and in need of large storage. To address 

such challenges, Qiao et al. (2010) propose sparsity preserving pro- 

jection (SPP) method, which aims to preserve the structure infor- 

mation by learning sparse reconstruction relationship between the 

original data, thus the intrinsic geometric structure of the original 
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data can be reflected, containing more natural discriminating in- 

formation. And many SPP-based methods have been proposed ( Lu 

et al., 2013; Wang et al., 2016 ). However, these SPP-based meth- 

ods are not robust to the noise because the latent global struc- 

ture of data is neglected. Low-rank representation (LRR ( Liu et al., 

2010 )) is better at capturing the global structure of data by seeking 

the lowest rank representation among all the candidates and rep- 

resents the data samples as linear combinations of the bases in a 

dictionary. Du et al. (2016) propose low rank sparse preserve pro- 

jection for face recognition, which seeks the projective matrix by 

preserving both the global structure and locally linear structure of 

the data after constructing a low rank and sparse graph. As for the 

sparse regularization of projection matrix, being implemented by 

l 1 -norm (lasso ( Tibshirani, 2011 )), although it is convenient to com- 

pute, it is not effective in selecting sufficient sparse features. Some 

researchers have extended it to l p -norm (0 < p < 1) ( Foucart et al., 

2009 ), and Xu et al. (2012) demonstrate that when p is 1/2, the 

performance of feature selection is the best. Due to the neglec- 

tion of the correlationship between features, Nie et al. (2010) pro- 

pose joint l 2,1 -norm for feature selection and has been widely ap- 

plied in many feature reduction methods ( Zhou et al., 2016; Zhu 

et al., 2016 ). As l p -norm can select sparser features than l 1 -norm, 

Wang et al. (2013 ) propose l 2,p -matrix norm (0 < p < 1) and empir- 

ically point out that when p equals 1/2, the regularization selects 

the sparsest and more robust features. However, less works based 

on l 2,p -matrix norm are proposed. 

In the above research, we note that LRSPP owns better perfor- 

mance in structure learning. However, it lacks the measurement of 

information between the original data space and the learned sub- 

space which is spanned by the selected features. Beside this, the 

using of l 2,1 -norm fails to select sufficient sparse and discriminative 

features. To jointly address these two problems, we incorporate the 

loss of information, the embedding of low rank and sparse graph 

and l 2,1/2 -matrix norm into a joint framework, named GGEFS, for 

dimensionality reduction. Now we state several characteristics of 

our algorithm as follow: 

1. This approach considers both the information discrepancy be- 

tween the original feature space and the lower dimensional 

subspace, which efficiently reduces the loss of information, and 

the structure preserving term is based on low rank sparse 

graph, which acquires adequate discriminative information and 

avoids problems of parameters selection. 

2. We use l 2,1/2 -matrix norm on the projection matrix, thus select 

sparser and discriminative features ( Wang et al., 2013 ). 

3. Lagrange Multiplier method is adopted to solve the optimiza- 

tion problem. Algorithm and convergence analysis in this paper 

are presented in Section 3 . 

The reminder of this paper is organized as follow. In Section 2 , 

we present a generic select model and some background knowl- 

edge. In the following sections, our feature selection method is de- 

scribed in detail as well as the corresponding solution. Experimen- 

tal results are reported in Section 4 . And finally, we present our 

conclusion and the perspective of this work. 

2. Related work 

In this section, we briefly review the related research about our 

method, first we give a generic framework feature selection model, 

and low rank sparse representation is subsequently described. 

2.1. A generic select model 

Given n training samples X = [ x 1 , x 2 ,..., x n ] ∈ R d × n , each sample is 

located in d -dimensional space. A generic idea of feature selection 

is to consider three terms in a union model as: 

min 

W 

Loss (X ) + αLoc(X ) + βRe g(W ) (1) 

where α and β are regularization parameters to balance the lo- 

cal structural preservation and regularization, and W is the feature 

selection matrix. Implications of the three items are as follow: 

1. The first term is the information discrepancy between the orig- 

inal data space and subspace spanned by the selected features, 

the usual measurement is Euclidean distance. 

2. The second term is the information of structure preserving, 

which contains important discriminative information, and the 

usual methods are local linear embedding, linear preserve pro- 

jection and so on. 

3. The third term is sparse regularization, which controls the spar- 

sity of projection matrix. 

Group Lasso constructed with l 2,1 -norm is used as the sparse 

regularization in recently research ( Zhou et al., 2016 ). However, 

inspired by that l p -norm (0 < p < 1) is sparser than l 1 -norm, 

Wang et al. (2013 ) extends the matrix norm to mixed l 2,p -norm and 

define 

‖ 

A ‖ 2 ,p = 

( 

m ∑ 

i =1 

∥∥a i 
∥∥p 

2 

) 1 /p 

(2) 

where a i is row vector of A . It’s obvious that the noise magnitude 

of distant outlier with l 2, p -norm (0 < p < 1) is less than that with 

l 2,1 -norm, so l 2,p -norm based method is more robust. And Wang 

et al. empirically point that l 2, p -norm has the best performance in 

selecting sparse features when p = 0.5. 

2.2. Low rank sparse representation 

Sparse representation aims to use fewer elements in dictionary 

to represent samples. Original data is usually treated as a dictio- 

nary to generate the sparse representation of each sample x i , which 

can preserve intrinsic geometric information. Moreover, inspired by 

the property that low-rank can preserve the overall structural in- 

formation, Du et al. (2016) integrates the above two ideas together 

to obtain the distribution of original data space. The formulation is 

given as: 

min 

V,E 
‖ 

V ‖ ∗ + λ‖ 

E ‖ 2 , 1 + γ ‖ 

V ‖ 1 

s.t. X = X V + E, diag(V ) = 0 

(3) 

where V is the weight matrix reconstructed by dictionary X, l 1 - 

norm is imposed on V for sparseness. ‖ • ‖ ∗ is nuclear norm, 

namely the sum of singular values of a matrix, and it is used to 

ensure its low rank property. E i is the simulated noise matrix, λ
and γ are non-negative equilibrium parameter. Since each x i is ex- 

cluded from reconstructing itself, the values of the diagonal ele- 

ments of the matrix are restricted to 0. 

3. Proposed method 

In this section, we introduce GGEFS, which consist of the mea- 

surement of information discrepancy between the original data 

space and the lower dimensional subspace, structure preservation 

and sparse regularization of projection matrix, where the struc- 

ture preserving term is shaped by embedding the weight matrix 

containing structure information of the data into the lower dimen- 

sional subspace. As follows, we describe our model of dimension- 

ality reduction and the corresponding algorithm. 
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