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a b s t r a c t 

Type-2 fuzzy sets are preferred over type-1 sets as they are capable of addressing uncertainty more effi- 

ciently. Fuzzifier values play a pivotal role in managing these uncertainties; still selecting an appropriate 

value of fuzzifier has been a tedious task. Generally, based on observation, a particular value of fuzzi- 

fier is chosen from a given range of values for a given dataset. In this paper, I have tried to adaptively 

compute suitable fuzzifier values of interval type-2 fuzzy c -means for a given pattern. Information is ex- 

tracted from individual data points using histogram approach and this information is further processed 

to give us the two fuzzifier values m 1 and m 2 . These obtained values are bounded within some upper 

and lower bounds based on existing methods. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fuzzy c -means (FCM) is an unsupervised form of a clustering 

algorithm in which unlabeled data X = {x 1 ,x 2 ,..., x N } is grouped 

together according to their fuzzy membership values ( Bezdek, 

Ehrlich, & Full, 1984; Cannon, Dave, & Bezdek, 1986 ). Since, in 

data analysis and computer vision problems, analyzing and deal- 

ing the uncertainties is a very important issue, FCM is being vastly 

used in these fields. Type-1 fuzzy sets cannot deal uncertainties 

therefore, type-2 fuzzy sets were defined to represent the uncer- 

tainties associated with type-1 fuzzy sets ( Mendel & John, 2001; 

Mendel & John, 20 02 ; Mendel, 20 01; Mendel, 20 04 ; Zadeh, 1975 ). 

Though the computational complexity of typ-2 fuzzy sets is higher 

than that of type-1 fuzzy sets, but the results obtained through 

the type-2 fuzzy sets are much better than the results obtained 

through the type-1 fuzzy sets. Therefore, if type-2 fuzzy sets can 

provide significant improvement on performance (depending on 

the application), the increase of computational complexity due to 

type-2 fuzzy sets may be a small price to pay ( Mendel, 2004 ). In- 

terval type-2 fuzzy sets has lower computational complexity com- 

pared to the general type- fuzzy sets. 

The degree of fuzziness is one type of uncertainty which is 

dealt in interval type-2 fuzzy c -means. The fuzzifier m used in 

type-1, type-2 FCM, single and multiple kernel FCM, ranges from 

[1, + ∞ ), and its value significantly affects the formation of clusters 
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( Bezdek, 1981; Huang, Chuang, & Chen, 2012; Linda & Manic, 2012; 

Melin & Castillo, 2014; Nguyen & Ngo, 2013; Zhang, Zhang, & Chen, 

2003 ). Generally, m = 2 is selected as the fuzzifier value in FCM al- 

gorithm ( Bezdek, 1976 ). Several theories have been put forward on 

the possible range of values of m . 

Based on observation, initially upper and lower bound was 

given to be in between 1.1 and 5 ( Bezdek, 1981 ). Again, based on 

practical observation, for a given number of data points (n), it was 

suggested that fuzzifier should be chosen such that m ≥ n/(n-2) 

( Bezdek, Hathaway, Sabin, & Tucker, 1987 ). Later on, some re- 

searchers showed that range of m is between 1.25 and 1.75 ( Chan 

& Cheung, 1992 ), while others showed it to be in between 1.5 and 

2.5 ( Pal & Bezdek, 1995 ). 

The degree of fuzziness is dependent on data, so I cannot use 

the same bound for all data ( Yu, Cheng, & Huang, 2004 ). Two 

points which do not depend on m are the mass center and the 

cluster center. Exploiting this information, some researchers tried 

to provide upper and lower bound for fuzzifiers according to the 

given dataset ( Huang, Xia, Wang, Zeng, & Wang, 2012; Ozkan & 

Turksen, 2007 ). It can be seen that in FCM, a fixed value m is 

selected and all the above research works give us a range from 

which I need to manually select one value for a particular pat- 

tern. Recently work was done to fix this issue and researchers 

tried to automatically tune the fuzziness control parameter 

( Das, Sinha, Chakravarty, & Konar, 2013 ). Apart from this, not much 

work has been done in this regard and none for automatic tuning 

of fuzzifier value of interval type-2 FCM. Therefore, I propose adap- 

tive computation of the value of m for interval type-2 FCM. 

In my proposed method, I have tried to generate footprint 

of uncertainty (FOU) using histogram approach and then extract 
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Fig. 1. (a) No fuzzy region when m = 1 (b) low degree of fuzziness for m 1 (c) high degree of fuzziness for m 2 (d) FMR formed using both m 1 and m 2 . 

information from individual data points. Membership value thus 

obtained was further used to calculate the degree of fuzziness ( m ) 

for the given pattern set. Finally, this level of fuzziness was inte- 

grated into existing interval type-2 FCM to get the desired clusters. 

The rest of the paper is organized into four sections. In 

Section 2 a theoretical background of some related algorithms is 

provided from where I have derived my own idea. After this, my 

proposed method is explained in detail in Section 3 . Since no other 

algorithm exists to deal with the tuning of fuzzifier values; in 

Section 4 I have compared my results with results obtained while 

using some pre-selected fuzzifier values. Finally, in Section 5 I state 

my conclusion. 

2. Background 

This section includes discussion about fuzzifiers, their effect on 

memberships and cluster formation and one of the methods to de- 

termine their upper and lower bound. Later on, a brief account of 

fuzzy membership function generation using histogram approach 

method has also been given. 

2.1. Effect of fuzzifier on membership generation 

When the density or volume of clusters is different, then selec- 

tion of the value of fuzzifier plays a crucial role in fuzzy member- 

ship generation. The maximally fuzzy membership locations (ver- 

tical line) are where the points are equidistant to all the cluster 

centers and their relative distance from each cluster center is same 

and equal to 0.5 as shown in Fig. 1 (a). This vertical line can also 

be considered as decision boundary as m → 1. At this point, FCM is 

nothing but hard c -means. As the value of m (degree of fuzziness) 

increases, the maximum fuzzy region (MFR) increases. This can be 

seen in Fig. 1 (b) and (c). When m → + ∞ , the centers of various 

groups in FCM are degraded into almost the center of all the data. 

By using two fuzzifier values in interval type-2 FCM ( m 2 > m 1 ), I 

am able to control MFR more accurately as shown in Fig. 1 (d). 

2.2. Deciding the range of fuzzifier values 

As discussed earlier, few methods have been proposed for de- 

termining the upper and lower bounds of fuzzifier applicable for 

a given dataset ( Huang et al., 2012; Ozkan & Turksen, 2007 ). The 

FCM membership function of x i data point for j th cluster is given 

by 

u j ( x i ) = 

1 ∑ C 

k =1 
( d i j / d ik ) 

2 / (m −1) 
(1) 

where C represents the number of clusters, d ij is distance of i th 

point from j th cluster prototype. It is evident from this expression 

that membership function is independent of m at two points: 

(1) The point which is equidistant to all the cluster centers (also 

known as the mass center). It has a membership value of 1/C 

(C is a number of cluster centers). 

(2) The cluster centers, which have membership values of 1 

for their cluster but 0 for other clusters ( Huang et al., 

2012 ). 

So, to find the bounds, membership in the neighborhood is cal- 

culated and then, writing that expression in terms of m gives us 

the upper and the lower bound of m as given in (2) . 

1 + 

C − 1 

C 
. 
2 

δ
. | �| ≤ m ≤ 2 log d 

log 
(

δ
1 −δ

. 1 
C−1 

) + 1 (2) 

where d is the distance of data points from all the centers, � = 

d j −d ∗
j 

d ∗
j 

, where d j is the distance of data points from all j th clus- 

ter prototype, d ∗
j 

is the distance of data points from all the cluster 

prototype except j th cluster prototype, and δ is the threshold. 
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