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a b s t r a c t 

Supervised linear dimensionality reduction (LDR) performed prior to classification often improves the ac- 

curacy of classification by reducing overfitting and removing multicollinearity. If a Bayes classifier is to 

be used, then reduction to a dimensionality of K − 1 is necessary and sufficient to preserve the classifi- 

cation information in the original feature space for the K -class problem. However, most of the existing 

algorithms provide no optimal dimensionality to which to reduce the data, thus classification informa- 

tion can be lost in the reduced space if K − 1 dimensions are used. In this paper, we present a novel 

LDR technique to reduce the dimensionality of the original data to K − 1 , such that it is well-primed for 

Bayesian classification. This is done by sequentially constructing linear classifiers that minimise the Bayes 

error via a gradient descent procedure, under an assumption of normality. We experimentally validate 

the proposed algorithm on 10 UCI datasets. Our algorithm is shown to be superior in terms of the classi- 

fication accuracy when compared to existing algorithms including LDR based on Fisher’s criterion and the 

Chernoff criterion. The applicability of our algorithm is then demonstrated by employing it in diagnosing 

the health states of 2 ultrasonic flow meters. As with the UCI datasets, the proposed algorithm is found 

to have superior performance to the existing algorithms, achieving classification accuracies of 99.4% and 

97.5% on the two flow meters. Such high classification accuracies on the flow meters promise significant 

cost benefits in oil and gas operations. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Linearly reducing the dimensionality of a dataset is an impor- 

tant preprocessing step in machine learning for a number of rea- 

sons. For one thing, linear dimensionality reduction (LDR) enables 

easy visualisation of data when the data is reduced to two or three 

dimensions. For another, performing LDR prior to learning can re- 

duce model complexity while alleviating the small sample size 

problem in algorithms such as Fisher’s linear discriminant, where 

a very large dimensionality and much smaller training data cause 

the scatter matrix to be singular ( Lu, Plataniotis, & Venetsanopou- 

los, 2003; Sharma & Paliwal, 2015 ). More importantly, however, 

LDR often improves learning in the low-dimensional manifold in 

which the data is reduced to lie ( Brunzell & Eriksson, 20 0 0; Duin 

& Loog, 2004 ). This is usually due to the fact that LDR results 
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in useful feature extraction from a dataset, thus reducing overfit- 

ting ( Bermingham et al., 2015; James, Witten, Hastie, & Tibshirani, 

2013 ). In algorithms such as k-Nearest Neighbours (kNN), the per- 

formance improvement obtained from LDR is also attributable to 

the fact that LDR mitigates the effects of the so-called curse of di- 

mensionality ( Beyer, Goldstein, Ramakrishnan, & Shaft, 1999 ). 

LDR has been applied to several problems such as medi- 

cal diagnosis e.g. Sharma and Paliwal (2008) , Coomans, Jonck- 

heer, Massart, Broeckaert, and Blockx (1978) , Sengur (2008) and 

Polat, Güne ̧s , and Arslan (2008) , face and object recognition 

e.g. Song, Zhang, Wang, Liu, and Tao (2007) , Chen, Liao, Ko, Lin, 

and Yu (20 0 0) , Liu, Chen, Tan, and Zhang (2007) and Yu and 

Yang (2001) and credit card fraud prediction e.g. Mahmoudi and 

Duman (2015) to reduce the dimensionality of very high- 

dimensional feature spaces. Indeed, there are several other emerg- 

ing application areas where dimensionality reduction can be em- 

ployed to improve learning. One such area is flow meter diagnos- 

tics which is described in Section 4 . 

One of the most popular LDR techniques is Principal Compo- 

nents Analysis (PCA) ( Barber, 2012 ), which works by projecting the 
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original data onto a subspace where the variance of the data is 

maximised in each dimension. However, when statistical classifi- 

cation is desired after dimensionality reduction, PCA may lose the 

class-discriminatory information in the data, as the directions of 

maximum variance does not necessarily coincide with the most 

class-discriminative directions. 

In order to maximise the class-discriminatory information 

while linearly reducing the dimensionality, LDR aimed for clas- 

sification makes use of class labels to inform the choice of the 

transformation matrix M . In this case, the optimum objective func- 

tion to minimise is the Bayes error in the linearly reduced space 

( Buturovic, 1994; Fukunaga, 2013 ). However, as an analytic ex- 

pression for the Bayes error is hard to obtain for any arbitrary 

probability distribution, several approximations have been made 

( Buturovic, 1994; Duda, Hart, & Stork, 2012; Fukunaga, 2013 ), lead- 

ing to several supervised dimension reduction techniques ( Barber, 

2012; Brunzell & Eriksson, 20 0 0; Cunningham & Ghahramani, 

2015; Duin & Loog, 2004 ). Notable among these techniques is Lin- 

ear Discriminant Analysis (LDA) ( Barber, 2012; Fisher, 1936; Fuku- 

naga, 2013; Izenman, 2009 ). At its core, LDA is built on the as- 

sumption that the data is normally distributed in each class, with 

the covariance matrices of the classes being equal (an assump- 

tion known as homoscedasticity). Consequently, Fisher’s LDA max- 

imises Fisher’s criterion ( Barber, 2012; Duin & Loog, 2004; Fuku- 

naga, 2013 ) as a measure of class separability, by taking only the 

differences in the projected class means into account, ignoring any 

differences in covariance matrices that might be present among 

the various classes in the data ( Duin & Loog, 2004 ). 

However, experimental results have shown that if one accounts 

for the violation of the assumptions in the original procedure, the 

performance of LDA can be improved ( Hastie & Tibshirani, 1996; 

Marks & Dunn, 1974; Mika, Ratsch, Weston, Scholkopf, & Mullers, 

1999; Zhao, Sun, Yu, Liu, & Ye, 2009 ). Along this line, our previous 

work describe an iterative procedure to obtain a one-dimensional 

subspace where the Bayes error is minimised in the two-class 

problem under the normality assumption in LDA, while account- 

ing for heteroscedasticity ( Gyamfi, Brusey, Hunt, & Gaura, 2017 ). 

In this paper, we present a novel technique to LDR, that projects 

the original data onto a (K − 1) -dimensional subspace for the K - 

class problem. We do this by sequentially creating linear classi- 

fiers that minimise the Bayes error under assumptions of normality 

and heteroscedasticity via a gradient descent procedure. This pro- 

cedure is described in Section 3 . Though iterative, the proposed al- 

gorithm is fast, and it remains unaffected by the number of train- 

ing examples. In Section 4 , we describe the applicability of LDR 

to flow meter diagnostics. In Section 5 , we experimentally validate 

the proposed algorithm on 10 University of California, Irvine (UCI) 

datasets, as well as in the diagnosis of the health states of two ul- 

trasonic flow meters, using datasets provided by the National En- 

gineering Laboratory (NEL), United Kingdom. 

2. Background and related work 

Consider a dataset D = [ x 1 , . . . , x n ] with n examples and a di- 

mensionality of d . The dataset is assumed to be labelled and made 

up of K classes, i.e., D = [ C 1 , . . . , C K ] . We aim at finding a linear 

transformation T such that ˜ D = T � D has a dimensionality of q , i.e., 

T ∈ R 

d×q , where q < d , while maximising the class-discriminatory 

information. 

Let x̄ k , S k and πk = p(C k ) respectively be the mean, covariance 

and prior probability of the k th class, for k ∈ { 1 , . . . , K} . Also, let x̄ 

be the mean of the overall dataset D. 

2.1. Fisher’s criterion 

Fisher’s LDA aims to maximise Fisher’s criterion as given by: 

J F = trace (( T 

� S W 

T ) −1 ( T 

� S B T )) (1) 

where S W 

, the within-class scatter matrix and S B , the between- 

class scatter matrix are both given by 

S W 

= 

K ∑ 

k =1 

πk S k and S B = 

K ∑ 

k =1 

πk ( ̄x k − x̄ )( ̄x k − x̄ ) � . (2) 

In the two-class case, where reduction to only one dimension 

is possible, maximising Fisher’s criterion tends to minimise the 

Bayes error in the one-dimensional subspace onto which the data 

is projected, when the normality and homoscedasticity assump- 

tions hold ( Hamsici & Martinez, 2008; Izenman, 2009 ). 

2.2. Mahalanobis criterion 

For the K -class case (where K > 2), however, maximisation of 

Fisher’s criterion does not guarantee the minimisation of the Bayes 

error, even when the assumptions of homoscedasticity and nor- 

mality are satisfied. To get around this problem, an upper bound 

on the Bayes error based on the Mahalanobis distance has been 

employed for LDR in the multi-class scenario ( Brunzell & Eriks- 

son, 20 0 0 ). The Mahalanobis-based LDR seeks to preserve the sep- 

aration given by 

J M 

= 

∏ 

1 ≤i< j≤K 

( ̄x i − x̄ j ) 
� ( S i + S j ) 

−1 ( ̄x i − x̄ j ) (3) 

in the linearly reduced space. 

However, the Mahalanobis distance, just like Fisher’s criterion, 

does not take the difference in covariance matrices into account. 

2.3. Chernoff criterion 

To account for the difference in covariance matrices among the 

classes, a heteroscedastic extension of the Mahalanobis distance 

based on the Bhattacharya distance has been proposed for LDR 

( Decell Jr & Marani, 1976 ). Following this, there has been the use of 

a wider class of Bregman divergences, notably, the Kullback–Leibler 

divergence ( Decell & Mayekar, 1977 ) for heteroscedastic LDR. Yet, 

while the Bhattacharya distance provides a good enough bound 

on the Bayes error, it has been shown that the Chernoff bound 

provides a slightly tighter bound than the Bhattacharya distance 

( Duda et al., 2012; Nielsen, 2014 ). Thus, a directed distance matrix 

(DDM) based on the Chernoff criterion has been developed for di- 

mensionality reduction in the two-class case ( Loog & Duin, 2002 ), 

as well as in the multi-class setting ( Duin & Loog, 2004 ). Specif- 

ically, based on this DDM, the following Chernoff criterion is de- 

rived: 

J C = 

K−1 ∑ 

i =1 

K ∑ 

j= i +1 

πi π j trace 
[
( T 

� S W 

T ) −1 T 

� S 
1 
2 

W 

(
( S 

− 1 
2 

W 

S i j S 
− 1 

2 

W 

) −
1 
2 S 

− 1 
2 

W 

× ( ̄x i − x̄ j )( ̄x i − x̄ j ) 
� S −

1 
2 

W 

( S 
− 1 

2 

W 

S i j S 
− 1 

2 

W 

) −
1 
2 + 

1 

τi τ j 

( log S 
− 1 

2 

W 

S i j S 
− 1 

2 

W 

− τi log S 
− 1 

2 

W 

S i S 
− 1 

2 

W 

− τ j log S 
− 1 

2 

W 

S j S 
− 1 

2 

W 

) 
)
S 

1 
2 

W 

T 

]
, (4) 

with 

τi = 

πi 

πi + π j 

, τ j = 

π j 

πi + π j 

and S i j = πi S i + π j S j , (5) 

which is maximised to obtain an optimum linear transformation 

( Duin & Loog, 2004 ). 

However, while the original LDA procedure provides reduction 

to at most K − 1 dimensions, the LDR approaches described do 
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