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a b s t r a c t 

Anomaly (or outlier) detection is well researched objective in data mining due to its importance and in- 

herent challenges. An outlier could be the key discovery to be made from large datasets and the insights 

gathered from them could be of significance in a wide variety of domains like information security, busi- 

ness intelligence, clinical decision support, financial monitoring etc. Recently, Support Vector Data De- 

scription (SVDD) driven approaches are shown as having good predictive accuracy. This paper proposes 

a novel low-complexity anomaly detection algorithm based on Support Vector Data Description (SVDD). 

The proposed algorithm reduces the complexity by avoiding the calculation of Lagrange multipliers of an 

objective function, instead locates an approximate pre-image of the SVDD sphere’s center, within the in- 

put space itself. The crux of the training algorithm is a gradient descent of the primal objective function 

using Simultaneous Perturbation Stochastic Approximation (SPSA). Experiments using datasets obtained 

from UCI machine learning repository have demonstrated that the accuracies of the proposed approach 

are comparable while the training time is much lesser than Classical SVDD. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Outlier detection, the problem of finding patterns in data that 

do not conform to expected behavior has attracted lot of atten- 

tion due to its applicability in a wide variety of domains. One-class 

classification problem is one of the classical problems in data anal- 

ysis and has got its original application in outlier detection ( Bishop, 

1994; Ritter & Gallegos, 1997 ). The difference of one-class classifi- 

cation from conventional two-class or multi-class classification is 

that the information on only one of the classes (called the tar- 

get class) will be available for training. One-class classification has 

been applied in various scenarios like text classification ( Liu, Lee, 

Yu, & Li, 2002 ), medical analysis ( Gardner, Krieger, Vachtsevanos, 

& Litt, 2006 ), machine fault detection ( Shin, Eom, & Kim, 2005 ) 

etc. Moreover, it has also been applied to various business domains 

like financial credit scoring ( Wang, Wang, & Lai, 2005 ) and sup- 

plier selection ( Guo, Yuan, & Tian, 2009 ). One classical approach for 

One-Class Classification is Support Vector Data Description (SVDD). 

SVDD algorithm has been used in scenarios where single class in- 

formation is available in high quality and resolution, and a few 

outliers exist. SVDD has also been applied to cases where the prob- 

lem has to scale to a multi-class environment with information 
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of other classes only gradually becoming available, e.g. in Munoz- 

Mari, Bruzzone, and Camps-Valls (2007 ). 

SVDD was proposed by Tax and Duin (2004) to solve the origi- 

nal one-class classification problem. The basic idea is to construct 

a spherically shaped decision boundary that envelops most of the 

data of interest, with a smaller set of support vectors describing 

the boundary. This technique is first motivated without using the 

concept of support vectors. 

Given a set of data points, x i : i = 1:N in the d-dimensional real 

(or input) space R d , the objective is to minimize an objective func- 

tion that depends on the radius R of a sphere and its center a. 

O ( R , a , ξ ) = R 

2 + C 

∑ 

i ξi 

s . t . ‖ 

x i − a ‖ 

2 ≤ R 

2 + ξi , ξi ≥ 0 ∀ I 
(1) 

Here the parameter C controls the trade-off between the vol- 

ume and the errors while ξ i are slack variables which make the 

classifier ‘soft-margin’, i.e. allow some possibility of outliers in the 

training set. Object z is accepted by the description (i.e. z is within 

the (a, R) sphere) when the Euclidean distance is s . t . : ‖ ( z − a ) 2 ‖ ≤
R 

2 

1.1. Dual & primal SVDD 

Normally, for computational convenience and adaptation to the 

‘Kernel Trick’, ( 1 ) is solved in the dual space by introducing its La- 

grangian function. A description is given in Tax and Duin (2004) as 

also ( 4 ) below. For now, we assume we have the Lagrangian mul- 
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tipliers αi ’s corresponding to each pattern x i . The x i which have an 

associated αi > 0 are called support vectors ( SVs ). In particular, the 

SVs with 0 < αi < C are called unbounded SVs and the SVs with 

αi = C as the bounded SVs . In all calculations within the dual for- 

mulation, patterns x i appear only in the form of inner products 

with other patterns (x i . x j ). These inner products can be replaced 

by a kernel function K to obtain more flexible methods. This ker- 

nel function K is analogous to inner product in a possibly infinite 

dimensional hyper-space, and represents the ‘kernel trick’ of Clas- 

sical SVDD (C-SVDD). The centre of the minimum enclosing ball a F 
and the radius R are represented as 

a F = 

∑ N s 

i=1 
αi φ( x i ) 

R 

2 = 1 − 2 

∑ 

x i ∈ SV s 

αi K ( x i , x k ) + 

∑ 

x i ∈ SV s 

∑ 

x j ∈ SV s 

αi α j K 

(
x i, x j 

)
of these the latter quantity is calculable due to K being known. The 

former quantity is not needed explicitly, the decision function for 

checking a pattern z now becomes: 

1 − 2 

∑ 

i 

αi K ( z , x i ) + 

∑ 

i , j 

αj αj K 

(
x i , x j 

)
≤ R 

2 

Thus the testing time complexity for C-SVDD is linear in the 

number of support vectors. However, solving the dual optimiza- 

tion problem (that yields the lagrange multipliers) is also of high- 

complexity, typically O( N 

3 ). Studies suggest that primal optimiza- 

tion will be superior for large scale optimization ( Chapelle, 2007 ), 

due to the observation that when the number of training points 

N is large, the number of support vectors will also likely be large, 

and this results in updates of nearly N lagrange multiplier parame- 

ters during optimization and a complicated decision function dur- 

ing the testing of the algorithm. Hence it is advisable to directly 

minimize the primal objective function. We give an reference for 

this below: 

While solving the SVDD problem, ( Pauwels & Ambekar, 2011 ) 

proposes solving an unconstrained optimization problem in the 

primal: 

Minimize O 

′ 
p ( a, R ) = R 

2 + C 

N ∑ 

i =1 

( d i 
2 − R 

2 ) + (2) 

where d i = ‖ x i − a ‖ and 

(. ) + is the ramp function, i.e. if X ≥ 0 then (x ) + = x , else (x ) + = 

0 . 

While solving the above, no transformation φ(.) is applied, and 

hence the generalization power of the kernel trick is not available 

in this arrangement. 

2. Related work 

The C-SVDD discussed above, as well as its variants that rely 

on expanding spatial resolution at the support vector locations (a 

method known as Conformal Kernel SVDD or CK-SVDD), as seen 

in Liu, Weng, Kang, Teng, and Huang (2010) have found applica- 

tions like the P300 Speller Brain-Computer Interface. The current 

best complexity to solve the C-SVDD training problem is O ( N ), an 

improvement from the original O ( N 

3 ) as demonstrated in the core 

vector application of Chu, Tsang, and Kwok (2004) . Even in this 

work, C-SVDD applies for small cases of the original problem and 

hence the LT-SVDD algorithm presented here applies there too. 

Also, the work in Chu et al. (2004) relies crucially for termina- 

tion on a pre-identified fraction of the expected number of out- 

liers: we do not need this in our algorithm. As is explained in Lee 

and Wright (2012 ), while the dual problem in 2-class SVMs is con- 

vex, the worst case space complexity is one dual variable per ex- 

ample/pattern. In order to assure that our algorithm does obtain an 

optimal point, the convexity of the primal problem in SVDD being 

obtained for a minor modification in Wang, Chung, and Shitong 

(2011 ) is our reference. The actual progress towards optimum is 

done using stochastic gradient methods which are considered pop- 

ular only in linear SVMs (e.g. Lin (2013) ). However, here we intro- 

duce an algorithm that adapts stochastic gradient to a method that 

uses the kernel trick. 

3. Proposed work 

This work proposes a novel low-complexity anomaly detection 

algorithm based on Support Vector Data Description (SVDD). For N 

patterns of dimension d, the current best complexity to solve SVDD 

training problem is O( N ) as demonstrated in Chu et al. (2004) . The 

proposed algorithm reduces the complexity of both training and 

testing to O( N + d ) by avoiding the calculation of the Lagrange 

multipliers αi , by locating an approximate pre-image of the SVDD 

sphere’s center in the input space during the training phase it- 

self. The proposed algorithm retains the benefit of the kernel trick: 

i.e. a minimum enclosing space is more descriptive of the data 

when calculated in a higher-dimensional feature space. The crux 

of the training algorithm is a gradient descent of the primal objec- 

tive function using Simultaneous Perturbation Stochastic Approxi- 

mation (SPSA) adapted to sub-gradients ( He, Fu, & Marcus, 2003 ) 

and a recast form of the primal problem suggested in Pauwels & 

Ambekar (2011 ) that does away with slack variables. 

The rest of this paper is organized as follows. Section 4 reviews 

the Fast-SVDD (F-SVDD) and then Section 5 describes our proposed 

procedure LT-SVDD. Experimental results on five UCI benchmark 

datasets and real-world credit datasets from the literature are pre- 

sented in Section 6 , while Section 7 gives concluding remarks. 

4. Fast svdd (f-svdd) 

The authors of Liu, Liu, and Chen (2010 ) propose a method 

called Fast SVDD (F-SVDD) to reduce the computational burden in 

the testing phase by replacing the kernel expansion in the deci- 

sion function by a single kernel term. This work relies on calculat- 

ing the pre-image ˆ x of a point termed as the ‘agent of the SVDD 

sphere’s centre a F ’ and denoted by ψ a . Note that ˆ x is in the in- 

put space whilst a F and ψ a are in the feature space. F-SVDD then 

uses a simple relationship between ψ a and a F , i.e. ψ a is a scalar 

multiple of a F, to re-express the centre with a single vector. Hence 

the decision function of FSVDD contains only one kernel term, and 

thus the complexity of the FSVDD decision function during testing 

is a constant, no longer linear in the support vectors. 

F-SVDD solves the pre-image problem to find a pattern ˆ x ∈ R d 

such that ψ a = φ( ̂ x ) and ψ a = γ a F . In particular, F-SVDD solves as 

first step the dual of this problem: 

Minimize O p ( R , a F , ξi ) = R 

2 + C 

N ∑ 

i=1 

ξi (3) 

Subject to ‖ 

φ( x i ) − a F ‖ 

2 ≤ R 

2 + ξi 

ξi ≥ 0 , ∀ i ∈ { 1 .. N } , 

where a F is the center of the minimum enclosing ball, R is its ra- 

dius and ξ i are slack variables that allow the enclosing ball to have 

a soft margin. Here a F and the kernel-trick based transformation 

of input pattern x i , φ(x i ), are potentially vectors in the infinite di- 

mensional feature space. All N vectors are assumed to belong to 

one, non-anomalous, class. 

Since it is convenient for computational purposes, it is the dual 

of this problem that is solved: 

Maximize O d ( α) = 1 −
N ∑ 

i=1 

N ∑ 

j=1 

αi αj K( x i , x j ) (4) 
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