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a b s t r a c t 

Kidney stone formation is a common disease and the incidence rate is constantly increasing worldwide. 

It has been shown that the classification of kidney stones can lead to an important reduction of the re- 

currence rate. The classification of kidney stones by human experts on the basis of certain visual color 

and texture features is one of the most employed techniques. However, the knowledge of how to analyze 

kidney stones is not widespread, and the experts learn only after being trained on a large number of 

samples of the different classes. In this paper we describe a new device specifically designed for cap- 

turing images of expelled kidney stones, and a method to learn and apply the experts knowledge with 

regard to their classification. We show that with off the shelf components, a carefully selected set of fea- 

tures and a state of the art classifier it is possible to automate this difficult task to a good degree. We 

report results on a collection of 454 kidney stones, achieving an overall accuracy of 63% for a set of eight 

classes covering almost all of the kidney stones taxonomy. Moreover, for more than 80% of samples the 

real class is the first or the second most probable class according to the system, being then the patient 

recommendations for the two top classes similar. This is the first attempt towards the automatic visual 

classification of kidney stones, and based on the current results we foresee better accuracies with the 

increase of the dataset size. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Medicine and healthcare are among the most important fields 

where expert systems have found application ( Wagner, 2017 ). For 

instance, computer aided detection and diagnosis systems can en- 

hance the diagnostic capabilities of physicians or reduce the re- 

quired time. Many of them are based on diverse imaging modal- 

ities like brain CT and MRIs, mammographies, chest X-ray and a 

long etc. Another type of expert systems are decision support sys- 

tems, whose purpose is not as much to produce a diagnostic but 

to analyze data (e.g. images) and present some kind of result so 

that decisions can be made more easily. At the core of such sys- 

tems one can often find classifiers, which are typically trained on 

data samples to generate a discrete prediction (a class label) plus 

a confidence score or a probability for each class, when presented 

a new sample. This is the case of the work described in this paper, 

which deals with the problem of kidney stone classification. 

∗ Corresponding author. 

E-mail addresses: joans@cvc.uab.es (J. Serrat), felipe@cvc.uab.es (F. Lumbr- 

eras), frnblanco@gmail.com (F. Blanco), Manuel.Valiente@uab.cat (M. Valiente), 

Montserrat.Lopez.Mesas@uab.cat (M. López-Mesas). 

Urinary lithiasis —the formation of kidney stones— shows a 

steady incidence increase in developed countries. Around 10% of 

population in developed countries suffer a stone episode at least 

once in his/her life ( Romero, Akpinar, & Assimos, 2010; Scales, 

Smith, Hanley, & Saigal, 2012 ). Emphasis should be made on the 

high prevalence affecting this disease. Some European follow-up 

studies have quantified the stone recurrence rate (repeated stone 

episodes for the same patient) at 40% in 5 years ( Andreassen, 

Poulsen, Olsen, Aabeck, & Osther, 2007; Hesse, Brndle, Wilbert, 

Khrmann, & Alken, 2003 ). These dramatic numbers reflect not only 

a disturbing and painful disease but also a considerable burden for 

the national healthcare systems ( Strohmaier, 2012 ). 

Once the stone episode has passed, it is widely agreed that 

an adequate study of the causes of stone formation is required 

in order to decrease the high recurrence of this disease ( Grases, 

Costa-Bauzá, Ramis, Montesinos, & Conte, 2002; Kok, 2012; Siener 

& Hesse, 2012 ). In fact, it has been pointed out that the cor- 

rect treatment of stone patients can drop further stone forma- 

tion as much as 46% ( Nolde, Hesse, Scharrel, & Vahlensieck, 1993; 

Strohmaier, 2011 ). The urinary stone represents a solid description 

of the metabolic disturbances suffered by the patient, so it should 

be regarded as the starting point of an individualized treatment. 
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Aware of the importance of stone characterization, clinical sci- 

entists have used a variety of approaches for the description of 

urinary calculi. Already in the second half of the 19th century, 

the first classification of stones was devised, based on features 

such as color, hardness and shape. A number of techniques have 

been used from that starting point. IR spectroscopy, X-Ray diffrac- 

tion and stereoscopic microscopy stand as the most extended 

analysis methodologies ( Schubert, 2006 ). The rest of techniques 

(electron microscopy, Raman spectroscopy, hyperspectral imaging 

among them) have been mainly used for research purposes. 

IR spectroscopy is easy to use and yields quantitative results, 

but the sample needs to be grinded and the distribution of com- 

ponents in the stone, related to its etiology, is inevitably lost. X- 

Ray diffraction presents the same drawback, as well as less avail- 

able instrumentation. Hyperspectral imaging has proven to be a 

high-performance alternative. Like in IR spectroscopy, hyperspec- 

tral images are suitable to detect the presence of chemical com- 

ponents based on the spectral signature of the sample but, at the 

same time, to know their spatial distribution on the imaged sur- 

face of the stone. A few works have attempted to perform a pixel- 

wise classification according to some kidney stone classes with in- 

frared and near infrared spectral imaging, like ( Blanco et al., 2012; 

Piqueras, Duponchel, Tauler, & DeJuan, 2011 ) and notably ( Blanco 

et al., 2015 ). However, they do not perform a large scale study with 

hundreds of stones, like us. Additionally, the problem of this ap- 

proach is that the equipment needed for its implementation is 

costly and not always available even in clinical laboratories. 

In stereoscopic microscopy ( Cloutier, Villa, Traxer, & Daudon, 

2015; Daudon, Bader, & Jungers, 1993; Grases et al., 2002 ) the ex- 

ternal surface and a section of fragments are observed at a magni- 

fication of 10X–40X. The color, 3D shape (e.g. lobulations, surface 

roughness and smoothness), size, shape and orientation of crystals, 

deposition layers, the existence of a core etc. provide cues to the 

expert with regard the stone class. Thus, stereoscopic microscopy 

relies on the expertise of the technician who performs the analy- 

sis. While very precise, it is time consuming, cannot be offered at a 

competitive price and generally the analysis is carried out in labo- 

ratories external to the hospital, so the waiting time for the results 

may become an issue. 

This paper presents a system composed of a device and auto- 

matic classification method, specifically conceived for the fast and 

on-site analysis of urinary stones. The system is based on the prin- 

ciples of stereoscopic microscopy, so the sample is classified at- 

tending to the amount and distribution of mineralogical compo- 

nents, as they appear on images captured by a standard camera. 

To the best of our knowledge, this is the first attempt to automate 

the visual classification of kidney stones. Hence, we consider as the 

main contributions of this work : 

1. The construction of a fully functional device, including hard- 

ware, user interface and classification software, for the visual 

recognition of renal calculi. 

2. The first extensive dataset for this kind of samples, available 

upon request at Lumbreras, Serrat, and Rotger (2017) . It consists 

of 14,500 images of 908 stone fragments from 454 producers, 

recording separately both the external and internal side of each 

fragment, under visible and near infrared light sources. 

3. The identification of discriminant color and texture features to 

train a state-of-the art classifier that attains a baseline accuracy 

of 63% for the top class and 83% for the top-2 classes, in spite 

of the large intraclass variability combined in some cases with 

considerable inter-class similarity. 

4. We show that a boost in performance is possible with the use 

of the urinary pH level, obtaining 70% and 89% top-1 and top-2 

accuracy, respectively. Moreover, confusions align with classes 

judged more similar by the annotator expert. 

Table 1 

Percentage of kidney stone classes and subclasses in our dataset and naturally ap- 

pearing according to Grases et al. (2002) . Even though figures vary depending on 

the world location of the study, COM, COD and UA calculi stand for the vast major- 

ity and their proportions are similar to those in the dataset. 

Main Class Dataset Natural 

components Scheme 1 Scheme 2 Samples Percent Frequency 

2 31 6.8 

COM 2 2b 29 6.4 29.3 

2codt 30 6.6 

3b 27 5.9 

COD 3 3t 53 11.7 33.8 

3bt 59 13.0 

CO + HAP 4 4 63 13.9 11.2 

HAP 5 5 19 4.2 7.1 

STR 6 6 38 8.4 4.1 

BRU 7 7 14 3.1 0.6 

UA 8 8 61 13.4 8.2 

UA + CO 9 9 30 6.6 2.6 

CYS and others 3.1 

Total 454 

The organization of this paper is as follows. Section 2 presents a 

widespread taxonomy of kidney stones. They are characterized by 

the presence of certain chemical components that show up as color 

and textural features. Section 3 describes the device we have built 

to acquire images of kidney stone fragments. We follow a certain 

procedure to record a sample, which is a collection of images of 

a pair of fragments from one same patient. Accordingly, we have 

built a large dataset with samples of all the classes but the one 

less frequently found ( Section 4 ). On the images of the dataset we 

have computed a set of visual features related to color and tex- 

ture which then are fed into a random forest classifier ( Section 5 ). 

In Section 6 we combine the class probabilities given by this clas- 

sifier with those obtained from the urinary pH level, a non-visual 

feature that helps to distinguish some classes. Section 7 reports the 

results for four variants of the classifier, depending on the scheme 

of classes used (8 main classes or 12 fine-grained classes) and the 

use or not of the urinary pH level as an additional feature. Finally, 

Section 8 draws the main conclusions and avenues of future work. 

2. Kidney stone taxonomy 

There is a well known taxonomy proposed by Daudon et al. 

(1993) . It is a hierarchical classification whose first level consid- 

ers the main or two main chemical species in the stone (calcium 

oxalate, uric acid etc.). A second level is provided to account for 

different etiologies or pathologies that such broad classes do not 

discern well. Thus, urologists consider also what the minor com- 

ponents are and their spatial distribution. The later means, for 

instance, whether they are on the surface or the inside of the 

stone, forming a core, layers, radial structures, lobules or uniformly 

spread. Table 1 relates the two taxonomies. 

This second level has a total of 21 classes, making it difficult to 

adapt to the clinical practice. Moreover, since our goal is to train 

a classifier, we will need as much samples as possible per class. 

Unfortunately, many second level classes (and even some of the 

first level) have a low natural frequency of occurrence, so they may 

not be well represented in a dataset. Grases et al. (2002) simplified 

this classification scheme and we draw from them our first scheme 

of classes which are: 

• calcium oxalate monohydrate (COM) 
• calcium oxalate dihydrate (COD) 
• mixed calcium oxalate and hydroxiapatite (CO - HAP) 
• hydroxiapatite (HAP) 
• struvite (STR) 
• brushite (BRU) 
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