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a b s t r a c t 

Under normality and homoscedasticity assumptions, Linear Discriminant Analysis (LDA) is known to be 

optimal in terms of minimising the Bayes error for binary classification. In the heteroscedastic case, LDA 

is not guaranteed to minimise this error. Assuming heteroscedasticity, we derive a linear classifier, the 

Gaussian Linear Discriminant (GLD), that directly minimises the Bayes error for binary classification. In 

addition, we also propose a local neighbourhood search (LNS) algorithm to obtain a more robust clas- 

sifier if the data is known to have a non-normal distribution. We evaluate the proposed classifiers on 

two artificial and ten real-world datasets that cut across a wide range of application areas including 

handwriting recognition, medical diagnosis and remote sensing, and then compare our algorithm against 

existing LDA approaches and other linear classifiers. The GLD is shown to outperform the original LDA 

procedure in terms of the classification accuracy under heteroscedasticity. While it compares favourably 

with other existing heteroscedastic LDA approaches, the GLD requires as much as 60 times lower train- 

ing time on some datasets. Our comparison with the support vector machine (SVM) also shows that, the 

GLD, together with the LNS, requires as much as 150 times lower training time to achieve an equivalent 

classification accuracy on some of the datasets. Thus, our algorithms can provide a cheap and reliable 

option for classification in a lot of expert systems. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

1. Introduction 

In many applications one encounters the need to classify a 

given object under one of a number of distinct groups or classes 

based on a set of features known as the feature vector. A typical 

example is the task of classifying a machine part under one of a 

number of health states. Other applications that involve classifica- 

tion include face detection, object recognition, medical diagnosis, 

credit card fraud prediction and machine fault diagnosis. 

A common treatment of such classification problems is to 

model the conditional density functions of the feature vector ( Ng & 

Jordan, 2002 ). Then, the most likely class to which a feature vector 

belongs can be chosen as the class that maximises the a posteriori 

probability of the feature vector. This is known as the maximum a 

posteriori (MAP) decision rule. 
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Let K be the number of classes, C k be the k th class, x be a fea- 

ture vector and D k be training samples belonging to the k th class 

(k ∈ { 1 , 2 , . . . , K} ) . The MAP decision rule for the classification task 

is then to choose the most likely class of x , C ∗( x ) given as: 

C ∗( x ) = arg max 
C k 

p(C k | x ) , k ∈ { 1 , 2 , . . . , K} (1) 

We assume for the moment that there are only K = 2 classes, 

i.e. binary classification (we consider multi-class classification in a 

later section). Then, using Bayes’ rule, the two posterior probabili- 

ties can be expressed as: 

p(C k | x ) = 

p( x |C k ) × p(C k ) 
p ( x ) 

, k ∈ { 1 , 2 } (2) 

It is often the case that the prior probabilities p(C 1 ) and p(C 2 ) 
are known, or else they may be estimable from the relative fre- 

quencies of D 1 and D 2 in D where D = D 1 ∪ D 2 . Let these priors 

be given by π1 and π2 respectively for class C 1 and C 2 . Then, the 

likelihood ratio defined as: 

λ( x ) = 

p( x |C 1 ) 
p( x |C 2 ) (3) 
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is compared against a threshold defined as τ = π2 /π1 so that one 

decides on class C 1 if λ( x ) ≥ τ and class C 2 otherwise. 

Linear Discriminant Analysis (LDA) proceeds from here with 

two basic assumptions ( Izenman, 2009 , Chapter 8): 

1. The conditional probabilities p( x |C 1 ) and p( x |C 2 ) have multi- 

variate normal distributions. 

2. The two classes have equal covariance matrices, an assumption 

known as homoscedasticity. 

Let x̄ 1 , �1 be the mean and covariance matrix of D 1 and x̄ 2 , 

�2 be the mean and covariance of D 2 respectively. Then, for k ∈ 

{1, 2}, 

p( x |C k ) = 

1 √ 

(2 π) d det (�k ) 
exp 

[ 
− 1 

2 

( x − x̄ k ) 
T �−1 

k 
( x − x̄ k ) 

] 

(4) 

where d is the dimensionality of X , which is the feature space of 

x . Given the above definitions of the conditional probabilities, one 

may obtain a log-likelihood ratio given as: 

ln λ( x ) 

= 

1 

2 

ln 

det �2 

det �1 

+ 

1 

2 

[ 
( x −x̄ 2 ) 

T �−1 
2 ( x −x̄ 2 ) −( x −x̄ 1 ) 

T �−1 
1 ( x − x̄ 1 ) 

] 
(5) 

which is then compared against ln τ so that C 1 is chosen if 

ln λ( x ) ≥ ln τ, and C 2 otherwise. Thus, the decision rule for clas- 

sifying a vector x under class C 1 can be rewritten as: 

( x − x̄ 2 ) 
T �−1 

2 ( x − x̄ 2 ) − ( x − x̄ 1 ) 
T �−1 

1 ( x − x̄ 1 ) ≥ ln 

τ 2 det �1 

det �2 

(6) 

In general, this result is a quadratic discriminant. However, a linear 

classifier is often desired for the following reasons: 

1. A linear classifier is robust against noise since it tends not to 

overfit ( Mika, Ratsch, Weston, Scholkopf, & Mullers, 1999 ). 

2. A linear classifier has relatively shorter training and testing 

times ( Yuan, Ho, & Lin, 2012 ). 

3. Many linear classifiers allow for a transformation of the original 

feature space into a higher dimensional feature space using the 

kernel trick for better classification in the case of a non-linear 

decision boundary ( Bishop, 2006 , Chapter 6). 

By calling on the assumption of homoscedasticity, i.e. �1 = 

�2 = �x , the original quadratic discriminant given by (6) for clas- 

sifying a given vector x decomposes into the following linear deci- 

sion rule: 

x 

T �−1 
x ( ̄x 1 − x̄ 2 ) 

C 1 
� 

C 2 
ln τ + 

1 

2 

( ̄x 

T 
1 �

−1 
x x̄ 1 − x̄ 

T 
2 �

−1 
x x̄ 2 ) (7) 

Here, �−1 
x ( ̄x 1 − x̄ 2 ) is a vector of weights denoted by w and ln τ + 

1 
2 ( ̄x 

T 
1 �

−1 
x x̄ 1 − x̄ T 2 �

−1 
x x̄ 2 ) is a threshold denoted by w 0 . This linear 

classifier is also known as Fishers Linear Discriminant. If only the 

weight vector w is required for dimensionality reduction, w may 

be obtained by maximising Fishers criterion ( Fisher, 1936 ), given 

by: 

S = 

w 

T ( ̄x 1 − x̄ 2 )( ̄x 1 − x̄ 2 ) 
T w 

w 

T �x w 

(8) 

where �x = n 1 �1 + n 2 �2 and n 1 , n 2 are the cardinalities of D 1 and 

D 2 respectively. 

LDA is the optimal Bayes’ classifier for binary classification if 

the normality and homoscedasticity assumptions hold ( Hamsici & 

Martinez, 2008 ) ( Izenman, 2009 , Chapter 8). It demands only the 

computation of the dot product between w and x , which is a rela- 

tively computationally inexpensive operation. 

As a supervised learning algorithm, LDA is performed either 

for dimensionality reduction (usually followed by classification) 

( Barber, 2012 , Chapter 16; Buturovic, 1994; Duin & Loog, 2004; 

Sengur, 2008 ), or directly for the purpose of statistical classification 

( Fukunaga, 2013 , Chapter 4; Izenman, 2009; Mika et al., 1999 ). LDA 

has been applied to several problems such as medical diagnosis 

e.g. Coomans, Jonckheer, Massart, Broeckaert, and Blockx (1978) ; 

Polat, Güne ̧s , and Arslan (20 08) ; Sengur (20 08) ; Sharma and Pali- 

wal (2008) , face and object recognition e.g. Chen, Liao, Ko, Lin, and 

Yu (20 0 0) ; Liu, Chen, Tan, and Zhang (2007) ; Song, Zhang, Wang, 

Liu, and Tao (2007) ; Yu and Yang (2001) and credit card fraud pre- 

diction e.g. Mahmoudi and Duman (2015) . The widespread use of 

LDA in these areas is not because the datasets necessarily satisfy 

the normality and homoscedasticity assumptions, but mainly due 

to the robustness of LDA against noise, being a linear model ( Mika 

et al., 1999 ). Since the linear Support Vector Machine (SVM) can 

be quite expensive to train, especially for large values of K or n 

( n = n 1 + n 2 ), LDA is often relied upon ( Hariharan, Malik, & Ra- 

manan, 2012 ). 

Yet, practical implementation of LDA is not without problems. 

Of note is the small sample size (SSS) problem that LDA faces with 

high-dimensional data and much smaller training data ( Lu, Platan- 

iotis, & Venetsanopoulos, 2003; Sharma & Paliwal, 2015 ). When d 

� n , the scatter matrix �x is not invertible, as it is not full-rank. 

Since the decision rule as given by (7) requires the computation 

of the inverse of �x , the singularity of �x makes the solution in- 

feasible. In works by, for example, Liu et al. (2007) ; Paliwal and 

Sharma (2012) , this problem is overcome by taking the Moore–

Penrose pseudo-inverse of the scatter matrix, rather than the ordi- 

nary matrix inverse. Sharma and Paliwal (2008) use a gradient de- 

scent approach where one starts from an initial solution of w and 

moves in the negative direction of the gradient of Fisher’s criterion 

(8) . This method avoids the computation of an inverse altogether. 

Another approach to solving the SSS problem involves adding a 

scalar multiple of the identity matrix to the scatter matrix to make 

the resulting matrix non-singular, a method known as regularised 

discriminant analysis ( Friedman, 1989; Lu et al., 2003 ). 

However, for a given dataset that does not satisfy the ho- 

moscedasticity or normality assumption, one would expect that 

modifications to the original LDA procedure accounting for these 

violations would yield an improved performance. One such mod- 

ification, in the case of a non-normal distribution, is the mixture 

discriminant analysis ( Hastie & Tibshirani, 1996; Ju, Kolaczyk, & 

Gopal, 2003; McLachlan, 2004 ) in which a non-normal distribu- 

tion is modelled as a mixture of Gaussians. However, the param- 

eters of the mixture components or even the number of mixture 

components, are usually not known a priori. Other non-parametric 

approaches to LDA that remove the normality assumption involve 

using local neighbourhood structures ( Cai, He, Zhou, Han, & Bao, 

2007; Fukunaga & Mantock, 1983; Li, Lin, & Tang, 2009 ) to con- 

struct a similarity matrix instead of the scatter matrix �x used in 

LDA. However, these approaches aim at linear dimensionality re- 

duction, rather than linear classification. Another modification, in 

the case of a non-linear decision boundary between D 1 and D 2 , is 

the Kernel Fisher Discriminant (KFD) ( Mika et al., 1999; Polat et al., 

2008; Zhao, Sun, Yu, Liu, & Ye, 2009 ). KFD maps the original fea- 

ture space X into some other space Y (usually higher dimensional) 

via the kernel trick ( Mika et al., 1999 ). While the main utility of 

the kernel is to guarantee linear separability in the transformed 

space, the kernel may also be employed to transform non-normal 

data into one that is near-normal. 

Our proposed method differs from the above approaches in that 

we primarily consider violation of the homoscedasticity assump- 

tion, and do not address the SSS problem. We seek to provide a 

linear approximation to the quadratic boundary given by (6) un- 

der heteroscedasticity without any kernel transformation; we note 
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