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a b s t r a c t 

In this paper, we present a novel approach for computing the Pareto frontier in Multi-Objective Markov 

Chains Problems (MOMCPs) that integrates a regularized penalty method for poly-linear functions. In ad- 

dition, we present a method that make the Pareto frontier more useful as decision support system: it 

selects the ideal multi-objective option given certain bounds. We restrict our problem to a class of finite, 

ergodic and controllable Markov chains. The regularized penalty approach is based on the Tikhonov’s 

regularization method and it employs a projection-gradient approach to find the strong Pareto policies 

along the Pareto frontier. Different from previous regularized methods, where the regularizator parame- 

ter needs to be large enough and modify (some times significantly) the initial functional, our approach 

balanced the value of the functional using a penalization term ( μ) and the regularizator parameter ( δ) at 

the same time improving the computation of the strong Pareto policies. The idea is to optimize the pa- 

rameters μ and δ such that the functional conserves the original shape. We set the initial value and then 

decrease it until each policy approximate to the strong Pareto policy. In this sense, we define exactly how 

the parameters μ and δ tend to zero and we prove the convergence of the gradient regularized penalty 

algorithm. On the other hand, our policy-gradient multi-objective algorithms exploit a gradient-based ap- 

proach so that the corresponding image in the objective space gets a Pareto frontier of just strong Pareto 

policies. We experimentally validate the method presenting a numerical example of a real alternative 

solution of the vehicle routing planning problem to increase security in transportation of cash and valu- 

ables. The decision-making process explored in this work correspond to the most frequent computational 

intelligent models applied in practice within the Artificial Intelligence research area. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

1.1. Brief review 

Multi-criterion optimization is a well-established research area 

with an extensive collection of solution concepts and methods 

presented in the literature (for an overview see, for example, 

Collette & Siarry, 2004; Dutta & Kaya, 2011; Ehrgott & Gandibleux, 

20 02; Eichfelder, 20 08; Mueller-Gritschneder, Graeb, & Schlicht- 

mann, 2009; Roijers, Vamplew, Whiteson, & Dazeley, 2013; Zit- 

zler, Deb, & Thiele, 20 0 0 ). The most common notion of multi- 

criterion optimization is that of efficient (or Pareto optimal) so- 

lutions, namely those solutions that cannot be improved upon in 

all coordinates (with strict improvement is at least one coordinate) 
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by another solution. Regrettably efficient solutions are non-unique. 

Then, different methods have been proposed to identify one op- 

timal solution, such that of computing the scalar combinations 

of the objective functions. Alternatively, an optimization method 

that leads to a well-defined solution is the constrained optimiza- 

tion problem, where one criterion is optimized subject to explicit 

constraints on the others. In practice decision makers often find 

it hard to specify such preferences, and would prefer a represen- 

tation method based-on an intelligent system able to exemplify 

the range of such possible alternatives. Many researchers utilized 

versatile computational intelligent models such as Pareto based 

techniques for handling this types of problems ( Angelov, Filev, & 

Kasabov, 2010 ). 

In the context of Markov decision processes (MDP) seri- 

ous works have been developed to compute efficient solutions. 

Durinovic, Lee, Katehakis, and Filar (1986) presented a MOMDP 

based on the average reward function to characterize the com- 

plete sets of efficient policies, efficient deterministic policies and 
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efficient points using linear programming. Beltrami, Katehakis, and 

Durinovic (1995) considered a MOMDP formulation for deploying 

emergency services considering the area average response time 

and the steady-state deterioration in the ability of each district to 

handle future alarms originating in its own region. Wakuta and 

Togawa (1998) suggested a policy iteration algorithms for find- 

ing all optimal deterministic stationary policies concerned with 

MOMDP with no discounting as well as discounting. Chatterjee, 

Majumdar, and Henzinger (2006) considered MDPs with multi- 

ple discounted reward objectives showing that the Pareto curve 

can be approximated in polynomial time in the size of the MDP. 

Etessami, Kwiatkowska, and Yannakakis (2007) studied efficient 

algorithms for multi-objective model checking problems which 

runs in time polynomial in the size of the MDP. Clempner and 

Poznyak (2016c) provided a method based on minimizing the 

Euclidean distance is proposed for generating a well-distributed 

Pareto set in multi-objective optimization for a class of ergodic 

controllable Markov chains. Clempner (2016) proposed to follow 

the Karush–Kuhn–Tucker (KKT) optimization approach where the 

optimality necessary and sufficient conditions are elicited naturally 

for a Pareto optimal solution in MOMDP. Clempner and Poznyak 

(2016a) presented a multi-objective solution of the Pareto front for 

Markov chains transforming the original multi-objective problem 

into an equivalent nonlinear programming problem implementing 

the Lagrange principle. Clempner and Poznyak (2016d) suggested 

a novel method for computing the multi-objective problem in the 

case of a metric state space using the Manhattan distance. Learn- 

ing schemes for constrained MCs were presented by Poznyak, Na- 

jim, and Gomez-Ramirez (20 0 0) , based on the theory of stochas- 

tic learning automata. Pirotta, Parisi, and Restelli (2015) provided 

an algorithm to exploit a gradient–based approach to optimize the 

parameters of a function that defines a manifold in the policy pa- 

rameter space so that the corresponding image in the objective 

space gets as close as possible to the Pareto frontier. As well as, 

Vamplew, Dazeley, Barker, and Kelarev (2009) studied the benefits 

of employing stochastic policies to MO tasks and examined a par- 

ticular form of stochastic policy known as a mixture policy propos- 

ing two different methods. 

1.2. Motivation 

Let us consider a general vector optimization problem as 

min f (x ) (with respect to K ) 
subject to 

g i (x ) ≤ 0 , i = 1 , . . . , m 

h i (x ) = 0 , i = 1 , . . . , p 

(1) 

where x ∈ R 

N is the optimization variable, K ⊆ R 

q is a proper cone, 

f (x ) : R 

N → R 

q is the objective function, g i (x ) : R 

N → R are the in- 

equality constraint functions, and h i (x ) : R 

N → R are the equality 

constraint functions. Here the proper cone K is used to compare 

the objective values. The optimization problem presented in Eq. (1 ) 

is a convex optimization problem if: i) the objective function f ( x ) 

is K-convex, ii) the inequality constraint functions g i ( x ) are convex, 

and iii) the equality constraint functions h i ( x ) are affine. 

Let us consider the set of achievable objective values of feasible 

points, 

O = 

{
f (x ) 

∣∣∃ x ∈ x ∈ R 

N , g i (x ) ≤ 0 , i = 1 , . . . , m, 

h i (x ) = 0 , i = 1 , . . . , p } ⊆ R 

q 

The values f (x 1 ) � K f (x 2 ) are to be compared using the inequal- 

ity � K meaning that x 1 is ‘better than or equal’ in value to x 2 . In 

this sense, if the set O has a minimum (optimal point of the prob- 

lem given in Eq. (1) ) then there is a feasible point x ∗ such that 

f (x ∗) � K f (x i ) for all feasible x i . When an optimization problem 

has an optimal point it is unique: if x ∗ is an optimal point then 

f ( x ∗) can be compared to the objective at every other feasible point, 

and is better than or equal to it. 

A point x ∗ is optimal if and only if it is feasible and 

O ⊆{ f (x ∗) } � K 

where { f (x ∗) } � K is the set of values that are worse than, or equal 

to, f ( x ∗). 

We say that a feasible point x is Pareto optimal (or efficient) if 

f ( x ) is a minimal element of the set of achievable values O. In this 

case we say that f ( x ) is a Pareto optimal point for the optimization 

problem given in Eq. (1) . Thus, a point x ∗ is Pareto optimal if it is 

feasible and, for any feasible x , f (x ) � K f (x ∗) implies f (x ) = f (x ∗) . 
A point x is Pareto optimal if and only if it is feasible and 

( { f (x ∗) } � K ) ∩ O = { f (x ∗) } (2) 

where { f (x ∗) } � K is the set of points that are better than or equal 

to f ( x ∗), i.e., the achievable value better than or equal to f ( x ∗) is 

f ( x ∗) itself. 

An optimization problem can have many Pareto optimal points. 

Every Pareto optimal point is an achievable objective value that lies 

in the boundary of the set of feasible points. The set of Pareto op- 

timal points P satisfies 

P ⊆ O ∩ B( O) 

where B( O) denotes the boundary of the set of feasible points. 

Let us consider the scalar optimization problem 

min λᵀ f (x ) (with respect to K ) 
subject to 

g i (x ) ≤ 0 , i = 1 , . . . , m 

h i (x ) = 0 , i = 1 , . . . , p 

λ ∈ [ 0 , 1 ] , 
q ∑ 

l 

λl = 1 

(3) 

The weight vector λ is a free parameter that allows to obtain 

(possibly) different Pareto optimal solutions of the optimization 

problem ( 1 ). Geometrically, this means that a point x is optimal 

for the scalarized problem if it minimizes λ�f ( x ) over the feasible 

set, if and only if λᵀ { f (x i ) − f (x ) } ≥ 0 for any feasible x i . 

If the optimization problem given in Eq. (1) is convex, then the 

scalarized problem given in Eq. (3) is also convex, since λ�f ( x ) is a 

scalar-valued convex function. This means that we can find Pareto 

optimal points of a convex optimization problem by solving a con- 

vex scalar optimization problem. 

Note that this problem may have non-unique solution. 

Tikhonov’s regularization ( Tikhonov, Goncharsky, Stepanov, & A.G., 

1995; Tikhonov & Arsenin, 1977 ) is one of the most popular ap- 

proaches to solve discrete ill-posed of the minimization problem 

f (x ) = x (1) 
j 1 

A 

l x (2) 
j 2 

. (4) 

The method looks for establishing an approximation of x by re- 

placing the minimization problem (4) by a penalized problem of 

the form 

f δ(x ) = 

∑ 

j 1 , j 2 

a j 1 j 2 x 
(1) 
j 1 

x (2) 
j 2 

+ 

δ

2 

(∥∥x (1) 
j 1 

∥∥2 + 

∥∥x (2) 
j 2 

∥∥2 
)

with a regularization parameter δ > 0. The term 

δ
2 

(∥∥∥x 
(1) 
j 1 

∥∥∥2 
+ 
∥∥∥x 

(2) 
j 2 

∥∥∥2 
)

penalizes large values of x , and result in a sensible solution in cases 

when minimizing the first term only does not. The parameter δ
is computed to obtain the right balance making both, the original 

objective function x (1) 
j 1 

A 

l x (2) 
j 2 

and the term 

δ
2 

(∥∥∥x 
(1) 
j 1 

∥∥∥2 
+ 
∥∥∥x 

(2) 
j 2 

∥∥∥2 
)

small. 

We can described the regularization problem as an optimization 

problem 

min 

x 

(
x (1) 

j 1 
A 

l x (2) 
j 2 

, δ
∥∥x (1) 

j 1 

∥∥2 + 

∥∥x (2) 
j 2 

∥∥2 
)
. (5) 



Download English Version:

https://daneshyari.com/en/article/4943643

Download Persian Version:

https://daneshyari.com/article/4943643

Daneshyari.com

https://daneshyari.com/en/article/4943643
https://daneshyari.com/article/4943643
https://daneshyari.com

