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a b s t r a c t 

Attribute reduction is among the most important areas of research in rough sets. This pa- 

per investigates the types of local attribute reduction for decision tables. We propose the 

concepts of l th decision class lower approximation reduction, l th decision class reduction, 

and l th decision class β-reduction for decision tables, and provide their corresponding re- 

duction algorithms via discernibility matrices. We also establish the relationship between 

positive-region reduction and the l th decision class β-reduction, and report a case study 

using the University of California–Irvine dataset to verify the theoretical results. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Proposed by Pawlak [23,24] , rough set theory is a useful tool to study decision systems characterized by insufficient and 

incomplete information. In more than 30 years of development, rough set theory has been successfully applied to many 

fields, such as artificial intelligence, machine learning, pattern recognition, decision analysis, and knowledge discovery in 

databases. A basic notion supporting the application of rough sets is the concept of attribute reduction [5,6,8,11,22,26,37] . 

The aim of attribute reduction in the context of a decision table is to obtain a minimal subset of attributes with the same 

classification power as the entire set of attributes. 

Many significant results pertaining to attribute reduction have been obtained in the literature [1–3,8–10,12,13,15,16,18–

20,25,33,34] , and a variety of attribute reductions have been defined with different criteria. For example, positive-region 

reduction, also introduced by Pawlak [24] , keeps the positive region unchanged. Wu [35] considered attribute reduction in 

decision tables based on the Dempster–Shafer theory of evidence. Ziarko [38] introduced the concept of β-reduction based 

on variable precision rough sets. This type of reduction is an important generalization of classical reduction that preserves 

the sum of objects in β lower approximations of all decision classes. Slezak [30] constructed a framework for approximate 

Bayesian networks and provided examples related to rough set-based attribute reduction. Slezak and Ziarko [29] proposed 

a Bayesian rough set model suitable for the identification and elimination of redundant attributes. Mi et al. [20] proposed 

the concepts of β lower distribution reduction and β upper distribution reduction based on variable precision rough sets. 

To expedite the reduction, Yang et al. [36] found that minimal elements in a discernibility matrix are sufficient to find all 

reductions. Inuiguchi et al. [9] proposed a variable precision dominance-based rough set reduction approach. Many new 

attribute reduction methods have recently been developed as well. Jia et al. [11] summarized 22 definitions of attribute 

reduction and proposed a generalized attribute reduction that considers the data and user preferences. 
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This paper can be viewed as a refinement of typical attribute reduction. The aim is to obtain local decision rule acqui- 

sition algorithms for decision tables. Positive-region reduction can acquire all rules in a decision table but requires a large 

amount of time and space. There are many decision classes for a decision table. However, we are sometimes interested in 

the characterization of a special decision class in the hope that a certain property of this class remains constant. That is, we 

expect that an approach can acquire rules for some decision classes but does not compute simultaneously for all classes. 

For example, we hope that the lower approximation for some decision classes remains unchanged. To address this issue, we 

propose the concepts of l th decision class lower approximation reduction and l th decision class reduction. As an extension 

of such types of reduction, we define the concept of the l th decision class β-reduction for decision tables. All these types of 

reduction can be viewed as local reduction for decision tables. We study the relationship between positive-region reduction 

and l th decision class β-reduction, and show that the l th decision class lower approximation reduction algorithm can find 

all positive-region reductions. This provides a new and simple algorithm for positive-region reduction. 

Skowron and Rauszer [28,31] were the first to propose the concept of the discernibility matrix and report important 

results [28] . Discernibility matrix-based attribute reduction is now a commonly used and efficient method. This paper 

defines discernibility matrices for different types of reduction. 

The remainder of this paper is structured as follows: In Section 2 , we review some basic notions related to variable 

precision rough sets and their extensions. Section 3 proposes the concept of l th decision class lower approximation reduction 

for decision tables and formulates a corresponding algorithm. Section 4 studies l th decision class reduction for decision 

tables and provides a reduction algorithm for it. As an extension of l th decision class reduction, Section 5 considers l th 

decision class β-reduction and its algorithm. Section 6 discusses the relationship between positive-region reductions and 

l th decision class β-reductions, and Section 7 reports a case study to verify our theoretical results. Section 8 contains the 

conclusions of this study. 

2. Variable precision rough sets and their extensions 

In this section, we review variable precision rough sets and their extensions. Let U = { x 1 , x 2 , . . . , x n } be a finite set of 

objects called the universal set and P ( U ) be the power set of U . Suppose that R is a binary relation on U . Recall that the left 

and right R -relative sets of an element x in U are defined as 

l R (x ) = { y | y ∈ U, yRx } and r R (x ) = { y | y ∈ U, xRy } , 
respectively. R is referred to as serial if r R ( x ) � = ∅ for each x ∈ U. R is referred to as reflexive if, for each x ∈ U, x ∈ r R ( x ); R is 

referred to as symmetric if, for each x ∈ U , r R (x ) = l R (x ) , and is called transitive if, for each x, y, z ∈ U, y ∈ r R ( x ) and z ∈ r R ( y ) 

imply z ∈ r R ( x ). R is referred to as an equivalence relation if R is reflexive, symmetric, and transitive. 

Recall that if X is a subset of a universal set U , the characteristic function λX of X is defined, for each x ∈ U , as follows: 

λX (x ) = 

{
1 , x ∈ X 

0 , x / ∈ X 

. 

We need some lemmas. 

Lemma 2.1. Let A and B be subsets of U. Then, λA = λB if and only if A = B . 

Similarly, for any given binary relation R on U, for x, y ∈ U, λR ( x, y ) is equal to one if xRy, and is zero otherwise. 

For a serial relation R on U, suppose that M R = (a i j ) n ×n is the relational matrix of R, i.e., 

a i j = λR (x i , x j ) . We define n × n matrices as follows: N R = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

1 

| r R (x 1 ) | 
1 

| r R (x 2 ) | 
. . . 

1 

| r R (x n ) | 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

, and 

W R = N R M R = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

a 11 

| r R (x 1 ) | 
a 12 

| r R (x 1 ) | . . . 
a 1 n 

| r R (x 1 ) | 
a 21 

| r R (x 2 ) | 
a 22 

| r R (x 2 ) | . . . 
a 2 n 

| r R (x 2 ) | 
. 
. 
. 

. 

. 

. 
. 
. 
. 

. 

. 

. 

a n 1 
| r R (x n ) | 

a n 2 
| r R (x n ) | . . . 

a nn 

| r R (x n ) | 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. 

Lemma 2.2. Let R and S be serial relations on U. Then, W R = W S if and only if R = S. 

Proof. We must show that x i Rx j ⇔ x i Sx j . x i Rx j ⇔ λR (x i , x j ) = 1 . If x i Rx j , by W R = W S , 
1 

| r R (x i ) | = 

λR (x i , x j ) 

| r R (x i ) | = 

λS (x i , x j ) 

| r S (x i ) | , which 

means that x i Sx j . Similarly, we can show that x i Sx j implies x i Rx j . �
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