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a b s t r a c t 

In this paper, we examine the zeros of permanental polynomials as highly unique network 

descriptors. We employ exhaustively generated networks and demonstrate that our defined 

graph measures based on the moduli of the zeros of permanental polynomials are quite 

efficient when distinguishing graphs structurally. In this work, we continue with a line 

of research that relates to the search of almost complete graph invariants. These highly 

unique network measures may serve as a powerful tool for tackling graph isomorphism. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Methods for analyzing complex networks have been ubiquitous since many years [9,10,37,38] . The main reason comes 

from the fact that various mathematical and related problems can be translated into a network-based description. Choosing 

the right method for a particular problem has been intricate, see [10] . Therefore we already elaborated on the problem that 

graphs can be analyzed descriptively or quantitatively, see [10] . The descriptive analysis of networks mostly corresponds 

to problems in classical graph theory, see Halin [20] or Harary [21] . In this paper, we focus on a special aspect when 

dealing with the latter problem. We put the emphasis on discriminating networks uniquely when using quantitative network 
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measures. This general problem has already been tackled by Dehmer and co-workers [12,14,15] and many other contributors, 

see, e.g., [1,3,26,42] . 

In order to define structural graph measures to characterize networks quantitatively, it has not been clear which graph 

invariant turns out to be optimal. Yet, this choice depends on the underlying network problem. For instance, eigenvalue- 

based measures turned out to be highly efficient when discriminating networks uniquely, see [14] . This task is based on 

computing single network measures where a single network measure characterizes a given network quantitatively. These 

measures are often called topological indices, see [25,28] . Another task relates to compare networks structurally by using 

similarity or distance measures [11,17] . Being aware of the just mentioned problem, Dehmer et al. [13] performed a large 

scale study to examine which graph invariant and what kind of graph measures have the highest uniqueness when applying 

them to exhaustively generated graphs. In the already mentioned papers, see [14] , we have explored the problem to define 

unique eigenvalue-based measures extensively. For example, we used the moduli of the roots of several known graph poly- 

nomials to define certain graph measures which turned out to be meaningful and efficient. Also, we employed the Randi ́c 

matrix [14] to define graph polynomials whose moduli of their zeros were good candidates to define highly discriminating 

graph measures. An overview and facts on graph eigenvalues and eigenvalue-based graph measures and their properties can 

be found in, e.g., [8,14,18,28,40,43] . 

The paper is in the line of the foregoing ones, see [14,15] . In particular, we demonstrate that a rather simple polynomial- 

based representation achieves very good results when discriminating exhaustively generated graphs structurally. We will see 

that the graph measures which are based on the moduli of the zeros of the permanental polynomial turned out to be quite 

efficient and, in parts, they outperform the foregoing measures defined in [14,15] . A further reason why we have chosen the 

permanental polynomial of a graph is that it has yet been relatively unexplored, see [24] . Theoretical insights and practical 

experience about the zeros of the permanental polynomial of a graph will be surely helpful in Quantitative Graph Theory 

[10] . We provide a brief review on the permanental polynomial in the next section. 

2. Methods and results 

2.1. The permanental polynomial of a graph 

Similar to the characteristic polynomial of a graph [8] , the permanental polynomial of a graph G = (V, E) has been defined 

by [29,30,36] 

P M(G ) 
per (z) := per (zE − M(G )) = 

| V | ∑ 

i =0 

a i z 
i . (1) 

M(G ) = (m i j ) i j is a | V | × | V | square matrix which encodes structural information of the graph G . For example, M(G ) = A (G ) 

or M(G ) = D (G ) means that we consider the adjacency matrix A [21] or the distance matrix D [16,21] of a given graph G . 

The permanent of the matrix M ( G ) has been defined by [29,30,36] 

per (M(G )) = 

∑ 

σ

| V | ∏ 

i =1 

m iσ (i ) , (2) 

where the summation goes over all the permutations σ of { 1 , 2 , . . . , | V |} . According to Li et al. [27] , we observe that the 

permanent of the matrix has been defined similarly compared to the determinant. However, the different definition of the 

permanent clearly results in a different polynomial representation compared by only using the determinant [8] . Computa- 

tional challenges when determining the permanent numerically have also been discussed by Li et al. [27] . Following [27] , 

no algorithm has yet been found to calculate the determinant of a matrix efficiently. To see how we tackle this problem 

practically, see Section 2.3.1 . 

Particularly, the permanental polynomial of graphs have been investigated in mathematical chemistry. In a series of 

papers, Cash [4–7] explored interrelations between the permanent of the adjacency matrix and the structure of chemical 

graphs. Earlier work is due to Gutman [19] when examining relationships between the permanent of the adjacency matrix 

of a chemical graph and their Kekulé structures. To study the existing body of literature related to permanent polynomials, 

we refer to the up-to-date review due to Li et al. [27] . 

In terms of investigating the zeros of the permanental polynomial, we also refer to Cash [4] . More precisely, he explored 

clusters of the zeros of the permanental polynomial of a isomer series of fullerenes [4] . In particular, Cash [4] examined 

the variation of the zeros in terms of the size of the fullerenes. More recent work in this context is due to Tong et al. 

[44] when considering the same problem for larger fullerenes. This proves that the zeros of the permanental polynomial 

encode structural information meaningfully by considering special graph classes. 

The question we are going to tackle in this paper relates to the problem whether the zeros of permanental polynomials 

are suitable to discriminate graphs uniquely. We emphasize that this problem does not only depend on the zeros of a 

particular graph polynomial. The considered graph class also matters and the way how we use the zeros to define a graph 

measures. With other words, the uniqueness of the resulting graph measures also depends on the type of graph measure. 

Note that we have already investigated this problem by employing well-known graph measures like the Balaban J index 

and graph entropies, see [13] . In this paper and in [14,15] , we use the basic form of the graph measures as defined in 
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