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a b s t r a c t

While most clustering methods assume that the number of data clusters is known, automatically estimating
the number of clusters by algorithm itself is still a challenging problem in the data clustering field. In this
paper, we aim to develop a novel local and not differentiable clustering method based on Particle Swarm
Optimization, which can estimate the number of clusters automatically. In particular, the proposed approach
measures the local compactness of each cluster by local density function, pushes the PSO towards max-
imizing such a compactness, and penalizes the whole procedure to avoid estimating quite a lot of clusters
during the evolution. The compactness modeling makes the clustering robust to outliers and noise. In
addition, due to the merit of PSO, although kernel trick is used in our modeling, it does not consume too
much memory when more and more data are processed. The evaluation on the synthetic dataset and the five
publicly available datasets shows that our algorithm can estimate the appropriate number of clusters and
outperforms six related state-of-the-art clustering methods that can also estimate the number of clusters.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Clustering has been broadly used in various scientific and
engineering disciplines, including data mining [1,2], document
retrieval [3], image segmentation [4], pattern classification [5],
biology [6], etc. To date, many algorithms have been developed by
researchers [7–10], and most of these clustering methods work
with the assumption that the number of clusters is known in
advance. However, it is often impracticable for users to have suf-
ficient prior knowledge on the number of clusters. It prevents
applying these clustering methods in many scientific areas (e.g.
biology [6]). Hence, developing a clustering approach that can
estimate the number of clusters is challenging but very necessary.

By far, some clustering algorithms [11–19] have been proposed
to address the problem of estimating the number of data clusters.
Support Vector Clustering (SVC) [11,12] is inspired by supporting
vector machine and has two main steps, including sphere con-
struction and cluster labeling, which is costly for large scale data.
Its time cost will be unacceptable even when the size of dataset is
about only a thousand. Affinity Propagation (AP) [13] is another
clustering algorithm that can estimate the number of clusters

automatically. It treats all data points as possible exemplars and
exchanges availability and self-responsibility messages between
any two of them iteratively until a high-quality set of exemplars
emerges [13]. However, it is very sensitive to parameter settings
and the parameter ‘preference’ is hard to locate while oscillations
cannot be eliminated automatically if occur [20]. In addition, it is
also sensitive to outliers. Although the approach [17] is robust to
the outliers and noise in data, it has to re-partition the dataset
k�1 times using the commonly used clustering algorithm, such as
K-means, with the cluster numbers increasing 1 each time, where
k is the maximum number of clusters and usually is set to be a
large number, and its performance is sensitive to the value k. As for
SCAMS [15], it is computationally expensive, and how to apply
DBSCAN [14] to high dimensional data is a problem left to solve.

Most of the above methods are induced from analytic mathe-
matical models, in which the optimal solution can be computed
analytically. However, sometimes analytic model is hard to model
complex criterion that cannot be solved analytically. Evolutionary
Computation [21] is a family of bio-inspired algorithms that can
deal with the problem properly without complex computation
operators. Hence, it is promising to consider the use of Evolu-
tionary Computation for intelligent computing in clustering.
Recently, some evolutionary computation methods like genetic
algorithm (GA) and particle swarm optimization (PSO) have been
applied in clustering [22–34]. Many of them cannot estimate the
number of clusters automatically. Although the algorithms in
[24,25,29,30] can find the number of clusters automatically, the
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estimation of the number of clusters in those algorithms is sen-
sitive to the noise and outliers in dataset, which will be also shown
on synthetical dataset in our experiments (see Section 4.2). ACDE
[33] is computationally expensive and may not work well in
practice. MDPSO [34] suffers from premature convergence due to
lack of divergence.

In summary, the weaknesses of SVC, SCAMS and DBSCAN lie in
the speed issue and for AP it is the parameter sensitivity. For the
aforementioned PSO and GA-based clustering methods which can
estimate the number of clusters automatically, they are sensitive to
the noise and outliers in data.

This work proposes a PSO-based Local Density Clustering method
(PLDC). Particle Swarm Optimization is an optimization method
belonging to Evolutionary Computation, which employs ideas
from biological evolution to solve computational problems in an
intelligent way. It is a population based stochastic optimization
technique for continuous nonlinear functions [35]. In the proposed
PLDC, a set of cluster centers is identified by translating the clus-
tering problem into a multi-modal optimization problem, that is to
search a set of cluster center candidates which are characterized
by a local energy fitness function. The distance-based locally
informed particle swarm algorithm (LIPS) [36] is used for the
multi-modal optimization. Then a cluster center selection
mechanism is introduced to select cluster centers. These proce-
dures are performed in feature space in the proposed algorithm.
As the local density around the outliers is extremely small, PLDC
can easily detect those outliers, thus getting a robust and precise
estimation of the number of clusters. The experiments on our
synthetic dataset and other publicly available datasets of images
and texts show that the proposed PLDC outperforms the state-of-
the-art clustering methods including the Genetic algorithm and
Particle Swarm Optimization based approaches [30,24,31,32]. In
addition, the proposed clustering is a nonlinear clustering method
and it does not need to store any kernel matrix, thus avoiding the
requirement of large scale memory.

Compared to existing methods, the contribution of this paper is to
propose a robust PSO-based clustering method, which adopts local
density of data to measure the compactness of clusters and can
estimate the number of clusters automatically. It is robust to noise,
therefore getting much better clustering of data, i.e., much higher
clustering accuracy and more accurate estimation of the number of
clusters, than many other state-of-the-art clustering methods. In
addition, the time and storage cost are not high in our algorithm.

In the remainder of this paper, we first introduce Particle
Swarm Optimization and algorithm in Section 2. Then we present
the proposed algorithm in Section 3. We compare the proposed
algorithm with related state-of-the-art clustering methods and
analyze the experimental results in Section 4. Finally, we conclude
the paper in Section 5.

2. Preliminary

Before introducing the methods proposed in our proposal, we
will first introduce some notations used in this paper and the
background. The frequently used notations are listed in Table 1
and the background are introduced below:

2.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO) [37] is a population-based
stochastic search process that is originally introduced by Kennedy
and Eberhart. It has been successfully applied in machine learning
tasks, such as clustering [25–28] and classification [38]. The task of
PSO is to optimize a fitness function by searching a set of particles
that represent potential solutions to the fitness function. By

iteratively improving the solutions during evolution, PSO gradually
approaches the optimum of the specified fitness function. In each
generation, particles move around in the search space by utilizing
the intelligence of the whole swarm according to some moving
rules and gradually move towards the optimum.

In detail, at the start of the algorithm, a population Y and its
correspondent velocity V are initialized randomly in general. A
PSO contains four steps which are conducted iteratively:

(1) For given matrices Y and V, let Yi and Vi denote the i-th row of
Y and V. Then we update Y as

Yi’YiþVi: ð1Þ
If any solutions have invalid value to the specific problem,
refine them.

(2) Evaluate population Y according to a specific fitness function.
(3) For a given matrix pBest, let pBesti denote the i-th row of pBest.

Then pBest is updated as

pBesti’argmaxffitnessðYiÞ; fitnessðpBestiÞg: ð2Þ
And gBest is updated to be the solution in pBest with the
highest fitness value.

(4) After updating the population Y, V is updated as

Vi ¼ωViþc1r1ðpBesti�YiÞþc2r2ðgBesti�YiÞ; ð3Þ

where c1 and c2 are the acceleration constants, ω is the inertia
weight to balance the global and local search performance, and r1
and r2 are two random numbers lying in ½0;1�. Repeat the above
four steps iteratively until the termination condition is met, e.g.
the maximum generation is reached or the population converges.
A brief flow chart of PSO is shown in Fig. 1.

2.2. Distance-based locally informed particle swarm algorithm

Multi-modal optimization, which is different from single-
modal optimization, amounts to finding multiple global and local
optima of a function. By far, niching methods are widely used for
solving multi-modal optimization problems [39–41]. However,
they need to specify certain niching parameters, which depend on
optima distribution of the fitness function and are hard to know in
advance, thus limiting their application to practice problems.
Distance-based locally informed particle swarm algorithm (LIPS)
[36] is another multi-modal optimization approach. It can elim-
inate the requirement of niching parameters and has better search
ability. Compared to the classical PSO algorithms, every particle in
LIPS adopts local information from its nearest neighborhood
measured in terms of Euclidean distance and then updates the
velocity in a different way by

Vi ¼ωðViþφðPi�XiÞÞ; ð4Þ

Table 1
Notations.

Notation Definition

N Size of dataset
d Dimension of data
NP Size of population
X Data matrix consisting of N data points in d-dimensional space. Each

row is a data sample
Y NP � d matrix consisting of NP particles (solutions) in d-dimensional

space
V NP � d velocity matrix correspondent to Y
pBest NP � d matrix consisting of the best solution each particle has

achieved so far
gBest The Best solution of pBest in each iteration
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