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a b s t r a c t

This paper addresses issues in fall detection in videos. We propose a novel method to detect human falls
from arbitrary view angles, through analyzing dynamic shape and motion of image regions of human
bodies on Riemannian manifolds. The proposed method exploits time-dependent dynamic features on
smooth manifolds based on the observation that human falls often involve drastically shape changes and
abrupt motions as comparing with other activities. The main novelties of this paper include:
(a) representing videos of human activities by dynamic shape points and motion points moving on two
separate unit n-spheres, or, two simple Riemannian manifolds; (b) characterizing the dynamic shape and
motion of each video activity by computing the velocity statistics on the two manifolds, based on geo-
desic distances; (c) combining the statistical features of dynamic shape and motion that are learned from
their corresponding manifolds via mutual information. Experiments were conducted on three video
datasets, containing 400 videos of 5 activities, 100 videos of 4 activities, and 768 videos of 3 activities,
respectively, where videos were captured from cameras in different view angles. Our test results have
shown high detection rate (average 99.38%) and low false alarm (average 1.84%). Comparisons with eight
state-of-the-art methods have provided further support to the proposed method.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

There is an increasing demand for assisted-living in elderly
care, due to the rapid growth of ageing population in the world.
According to the statistics, falling down poses a high risk to the
ageing group, as this could lead to bone fracture, stroke, and other
health emergences [1,2]. In such cases, urgent medical attentions
are needed. Since many persons in this ageing group live alone, it
is difficult for them to seek help immediately. Automatic e-health
care systems have drawn increasing interests and public aware-
ness recently. Among many possibilities in such systems, detecting
falls followed by triggering alarms is one of the main issues.

Previous work: Many existing methods use wearable devices
with motion sensors like accelerometers and gyroscopes [1,2], and
are able to produce reasonable results for the fall detection. For
example, Bourke et al. [3] suggested a method to distinguish falls
from activities of daily living (ADL) by using tri-axial accel-
erometer sensors mounted on the trunk and thigh of users, and by
thresholding the resultant signals. Kwolek and Kepski [4,5] em-
ployed a tri-axial accelerometer to indicate falls if a measured
acceleration value is higher than a predetermined threshold, and

used depth maps obtained from a Kinect sensor to authenticate
the fall alert. However, users can feel uncomfortable after wearing
the devices for a long time, or forget to wear them sometimes,
apart from requiring frequent battery charging. Visual monitoring
hence provides some advantages when the privacy issue is prop-
erly handled.

Much effort has been made to detect human falls in videos. One
way to address this problem is to analyze the bounding boxes that
encompass the target person in each frame. Miaou et al. [6] used
an omni-camera mounted on the ceiling to capture videos. A fall is
then detected if the aspect ratio of bounding box exceeds a pre-
determined threshold. Qian et al. [7] employed two bounding
boxes, one for the whole body, another for the lower body part.
Variations of these two boxes are used as the feature for fall de-
tection by using a SVM classifier. Debard et al. [8] extracted four
features from the bounding box to describe a fall, including the
aspect ratio, torso angle, speed of motion in box center and head. A
SVM classifier is then employed to detect the fall using these
features. Charfi et al. [9] defined fourteen features based on the
parameters of bounding box, e.g. height, width, aspect ratio, and
centroid of the box. Transforms (e.g., Fourier, wavelet) are then
applied to these features before fall detection by using either a
SVM or AdaBoost classifier. The major drawback is the insufficient
description of human motion by using the bounding box alone.
Furthermore, the performance is heavily dependent on the camera
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view angles.
Another commonly adopted way is to use the wide spatial

coverage of multiple cameras, or the depth information from
depth cameras. Auvinet et al. [10] reconstructed a 3D volume of a
person from eight cameras based on the camera calibration. A fall
is indicated if a large portion of body volume is found near the
ground for a certain duration of time. Rougier et al. [11] computed
the cost between the consecutive frames by shape matching, and
use a criterion for describing the shape deformation used in a
GMM classifier. A fall is decided by a majority voting from four
camera views. Hung and Saito [12] computed the occupied area of
a person by multiplying the widths of the minimum bounding
boxes from two orthogonal views. The information is then used to
determine whether the person is standing, sitting, or lying on the
ground. A fall is detected if the occupied area exceeds a threshold
and the person remains on the ground for an extended time
duration. Ma et al. [13] obtained human silhouettes from depth
images and learn curvature scale space (CSS) features. Actions are
represented by a bag of CSS words, and classified by the extreme
learning machine (ELM) for the fall and other action classes. Stone
and Skubic [14] modeled the vertical state of 3D object in each
depth video frame, and segmented the time series between the
states where or not a person is on the ground. An ensemble of
decision trees is then used to compute the confidence that a fall
occurs before a person is on the ground. It is worth noting the
trade-off between the performance and complexity (or cost) in
multi-camera or depth-camera methods.

In this paper, we propose a novel scheme for fall detection. The
method employs a manifold-based analysis of dynamic shape and
motion from videos using a single camera with arbitrary view
angles.

Motivation: Instead of using parameters of bounding boxes, our
focus is on the analysis of dynamic shape and motion of human
body inside the box. Based on the observations that the shape and
motion vary significantly when a person is falling, better features
could be extracted from the rate of changes in shape and motion
during a certain time interval. A suitable metric is required for
measuring the rate. The Riemannian geometry fulfills such a re-
quirement, under the assumption that many image features, in-
cluding shape and motion, can be effectively represented by points
on a low-dimensional Riemannian manifold. Therefore, we treat
dynamic shape (or motion) as connected points on a Riemannian
manifold. It is worth mentioning that such a description on the
manifold is not dependent on different camera views. By studying
the velocity statistics of dynamic shape and motion of human
body on the Riemannian manifold, the features are expected to be
less sensitive to the camera view angle. This can lead to a simple
and effective solution, without exploiting camera geometry and
requiring camera calibration.

Contributions: The main contributions of the proposed method
are: (a) the dynamic features of a falling person are represented as
points moving on the Riemannian manifold; (b) a human fall event
is characterized by a feature vector of velocity statistics, and is
correspondent to a moving point on the manifold by using the
geodesics; (c) the statistical feature vectors of shape and motion
on the two manifolds are weighted and combined according to
their mutual information; (d) extensive tests were conducted on
three video datasets (containing more than 1200 videos with
different complexities), where the results achieved are comparable
to state-of-the-art methods, including the ones based on multi-
camera calibration and multi-modal information.

The remainder of this paper is organized as follows: Section 2
briefly reviews the background theory. Section 3 gives the big
picture of the proposed method and then describes the main steps.
Section 4 describes the classification-based fall detection scheme.
Section 5 shows experimental results and comparisons on three

video datasets for fall detection. Finally, Section 6 concludes the
paper.

2. Theoretical background

This section briefly reviews the Riemannian geometry [15] and
the unit n-sphere [16], for the sake of mathematical convenience
in the subsequent sections.

2.1. Riemannian geometry

A manifold is a topological space, consisting of a complete set of
low dimensional subspaces embedded in a high dimensional
space. It is locally similar to the Euclidean space. For nonlinear
manifolds, the usual Euclidean calculus and conventional statistics
in vector spaces may not apply. A differentiable manifold equipped
with a globally defined differential structure allows one to perform
calculus on the manifold using special metrics. A Riemannian
manifold is a differentiable manifold, where the tangent space at
each manifold point has an inner product that varies smoothly
from point to point.

The geodesic is defined as the shortest curve between the two
points on a manifold. The geodesic distance, the length of the
geodesic, is the distance measure between two points on the
manifold.

2.2. The unit n-sphere

The unit n-sphere, n, is an n-dimensional sphere with a unit
radius, centered at the origin of the ( +n 1)-dimensional Euclidean
space. An example for n¼2 case is illustrated in Fig. 1. A unit n-
sphere is defined as

= { ∈ ∥ ∥ = } ( )+p p: 1 , 1n n 1

and can be considered as the simplest Riemannian manifold after
the Euclidean space [17]. It inherits a Riemannian metric from
embedding in +n 1. Under this metric, the geodesic distance
ρ ( )p q, between the two manifold points p, ∈q n is the great-
circle distance between them:

ρ ( ) = ( ) ( )p q p q, arccos , 2T

where (·)arccos is the inverse cosine function [16]. It is worth
noting that the great-circle distance between the two points is
unique.

The unit n-sphere finds its connection to some computer vision
tasks where the extracted feature vectors of objects are often
normalized by the ℓ2 norm. The descriptors thus lie on a unit n-
sphere n for some n. In the cases where feature vectors are
normalized block-wisely, the radius of the underlying sphere is not
unit. However, since any n-dimensional sphere centered at the
origin is homeomorphic to n, it turns out that they share exactly

Fig. 1. Example of an n-sphere n (n¼2) embedded in an ( +n 1)-D space +n 1. p
and q are the manifold points, ∈p q, n. The geodesic ρ is the shortest curve be-
tween p and q on the manifold.
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