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a b s t r a c t

In some highly populated areas of the planet, air quality is an issue. Since power plants in those areas
significantly contribute to air pollution due to SO2 and NOx emissions, it is appropriate to operate such
power plants enforcing admissible emission limits. Since emissions directly impact the air quality index,
which is highly uncertain 24 h in advance, admissible emission limits should be modeled as stochastic
parameters.To represent the stochastic nature of such admissible emission limits, we propose a two-
stage stochastic programming model for the commitment of power plants. The first stage represents
the day-ahead scheduling, and the second stage represents the real-time power system operation under
different weather and thus admissible emission limit conditions. We show the effect of stochastic emis-
sion limits on power system operations using a simple example and a 118-node case study.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation and aim

In some highly populated areas of the planet, air quality is an
issue. In China, power plants contributed 35% of the SO2 emissions
and 38% of the NOx emissions in 2014 [1]. Those air pollutants have
severe negative impact on the environment and human health, and
may shorten life expectancy by 5 years [2]. Thus, it is appropriate
to operate such power plants enforcing suitable emission limits
to reduce the risk to human life.

Different air quality indices (AQI) are used to measure air pollu-
tion. In some countries, such as US [3] and China [4], AQI is calcu-
lated using the concentration of several air pollutants (O3, PM2.5,
PM10, CO, NO2, and SO2). This is done as follows. First, the concen-
tration of each pollutant is measured. Then, sub-indices are calcu-
lated for each pollutant according to the concentration and the
national standard. Finally, the AQI equals the highest sub-index,
and the corresponding pollutant is defined as the main air pollu-
tant. In Europe, AQI is calculated similarly, while the national air
quality standards generally differ among countries. The CITEAIR
project was carried out to define a Common Air Quality Index
(CAQI) to make the AQI among European cities comparable [5]. It

is relevant to note that there is no perfect standard to measure
air quality. The value of AQI generally varies with the selected
measurement set and the calculation method [6]. For example,
Ref. [7] compares alternative ozone metrics. In [8] an aggregate
measure of air pollution is proposed. As a general rule, it should
be noted that a smaller AQI means better air quality under a given
AQI standard.

The main air pollutant in China is often PM2.5 (particulate mat-
ter with an aerodynamic diameter less than 2.5 lm). PM2.5 consists
of two categories: primary PM2.5 and secondary PM2.5. Primary
PM2.5 comes directly from emission sources, while secondary
PM2.5 results from other gas or liquid pollutants in the air, such
as SO2 and NOx. In heavily polluted cities in China (e.g. Beijing,
Shanghai and Guangzhou), 51–77% of the PM2.5 pollution is sec-
ondary [9]. The speed of secondary PM2.5 formation depends on
the concentration of pollutants and diffusion condition. In a steady
atmosphere (bad diffusion condition), SO2 and NOx are more likely
to convert to PM2.5, which highly deteriorates air quality. Since a
bad AQI usually results from bad diffusion condition, emissions
during bad AQI periods will further degrade the air quality. To help
ensure the air quality, many measures have been taken. Air pollu-
tion control devices have been widely installed in power plants,
cars, and industries. Emissions are monitored and controlled by
the government. If the forecasted AQI deteriorates in Beijing, an
alert is issued by the government proportional to the level of air
pollution. In turn, different measures are implemented to limit
emissions, including reducing the number of cars during daytime,
and reduction in the power output of local thermal power plants
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[10]. Therefore, emission limits based on AQI are appropriate to
regulate power system emissions [11].

Real-time air quality forecasting (RT-AQF), a discipline of the
atmosphere sciences, was started in 1970s [12]. Major RT-AQF
techniques can be grouped into two categories: statistical
approaches and physically-based approaches [12,13]. Statistical
approaches are based on the fact that weather and air quality vari-
ables are statistically correlated. They usually require a large
amount of historical measured data under various atmospheric
conditions. Statistical approaches are computationally fast, but
generally entail comparatively lower accuracy, since they neglect
the changes in emissions and do not embody a description of
chemical and physical processes. Physically-based approaches
refer to those using chemical transport models (CTMs). The CTM
model describes meteorological fields, emissions, and initial and
boundary conditions. Physically-based models generally have bet-
ter performance than statistical approaches, but a higher computa-
tional cost.

Although hourly AQI can be forecasted 8 days in advance [14],
RT-AQF is still a very challenging task. Due to the uncertainty in
weather and emissions forecast, and to the inaccuracy of the atmo-
sphere model, significant errors in RT-AQF are inevitable [15–18].
For example, for the daily 72-h PM2.5 forecast in the Eastern part
of China, more than 3=4 of all cities have normalized mean biases
within �25% [17]. Moreover, the accuracy tends to go down in

highly polluted areas. Forecasting accuracy for six pollutants and
different models is compared in [18], which may vary among cities
and cases. Probabilistic forecast can be used to overcome the lim-
itations [12].

At the time of scheduling power plants for next-day operation,
air quality and thus admissible emission limits are not accurately
known. Therefore, to make efficient commitment decisions while
ensuring low-enough pollution levels, the uncertainty in air quality
needs to be carefully represented. Using a simplistic deterministic
model [11] that disregards such uncertainty generally results in
either a highly costly operation or pollution levels overpassing
health safety limits.

To address this scheduling problem under weather uncertainty,
we propose a two-stage stochastic unit commitment model. The
first stage of this model represents the scheduling task that takes
place one day in advance, and the second stage represents the
many operating conditions that may occur the next day under dif-
ferent AQI scenarios. We denote this model Stochastic Emission-
Constrained Unit Commitment (SECUC).

1.2. Literature review

Relevant works related to environmental generation scheduling
are reviewed below. Delson [19] proposes an emission controlled
dispatch model, where the goal is to meet a given emission limit

Nomenclature

Indices
i index of thermal units
j index of demands
k index of segments in the piecewise model
n; r index of nodes
p index of air pollutants, such as SO2 and NOx

s index of scenarios
t index of time periods

Sets
T set of time periods
XI set of thermal units
XI

n set of thermal units located at node n

XJ set of demands
XJ

n set of demands located at node n

XL set of transmission lines
XN set of nodes
XN

0 set of emission-constrained nodes

XP set of air pollutants
XS set of scenarios
Xn set of nodes adjacent to node n

Variables: Scheduling variables
zit on/off status of unit i at time t: 1 if on, 0 if off

ySUit start-up status of unit i at time t: 1 if started-up at the
beginning of period t, 0 otherwise

ySDit shut-down status of unit i at time t: 1 if shut-down at
the beginning of period t, 0 otherwise

PS
it scheduled power output of unit i at time t

ESUitp start-up emission level of unit i at time t for pollutant p

hSnt voltage angle of node n at time t at the scheduling stage

kSnt dual variable of power balance constraint at the
scheduling stage (locational marginal price) at node n
and time t

Operation variables
Pits power output of unit i at time t in scenario s

eUits up-reserve deployment of unit i at time t in scenario s to
comply with emission limit uncertainty

eDits down-reserve deployment of unit i at time t in scenario
s to comply with emission limit uncertainty

DSHED
jts load shedding of demand j at time t in scenario s

Eitsp operation emission level of unit i at time t and scenario s
for pollutant p

hnts voltage angle of node n at time t in scenario s
knts dual variable of power balance constraint at the opera-

tional stage at node n and time t in scenario s
lntsp dual variable of emission limit constraint of pollutant p

at node n and time t in scenario s

Variables: Parameters
Ci marginal cost for unit i, $/MW h
Djt load of demand j at time t, MW

Fmax
nr transmission capacity of line n� r, MW

KM
ntsp emission limit of pollutant p at node n and time t in

scenario s, kg/h
LU;max
i ramp up limit for unit i, MW/h

LD;max
i ramp down limit for unit i, MW/h

Pmax
i capacity of unit i, MW

Pmin
i minimum power output of unit i, MW

RU;max
i maximum up reserve for unit i, MW

RD;max
i maximum down reserve for unit i, MW

VLOL
j value of loss of load for demand j, $/MW h

xnr per-unit reactance of line n� r

pSU
i start-up cost for unit i, $

rSU
ip start-up emission of pollutant p for unit i, kg

qs probability of scenario s
hmin
n minimum voltage angle of node n

hmax
n maximum voltage angle of node n
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