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a b s t r a c t

The electric vehicle (EV) flexibility, indicates to what extent the charging load can be coordinated (i.e., to
flatten the load curve or to utilize renewable energy resources). However, such flexibility is neither well
analyzed nor effectively quantified in literature. In this paper we fill this gap and offer an extensive anal-
ysis of the flexibility characteristics of 390k EV charging sessions and propose measures to quantize their
flexibility exploitation. Our contributions include: (1) characterization of the EV charging behavior by
clustering the arrival and departure time combinations that leads to the identification of type of EV
charging behavior, (2) in-depth analysis of the characteristics of the charging sessions in each behavioral
cluster and investigation of the influence of weekdays and seasonal changes on those characteristics
including arrival, sojourn and idle times, and (3) proposing measures and an algorithm to quantitatively
analyze how much flexibility (in terms of duration and amount) is used at various times of a day, for two
representative scenarios. Understanding the characteristics of that flexibility (e.g., amount, time and
duration of availability) and when it is used (in terms of both duration and amount) helps to develop
more realistic price and incentive schemes in DR algorithms to efficiently exploit the offered flexibility
or to estimate when to stimulate additional flexibility.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Partly because of environmental constraints, electric vehicles
(EVs) are increasingly being adopted as an alternative for internal
combustion engine (ICE) cars. However, the load from EVs may
increase the peak to average ratio of demand and hence create a
need for additional generation and network capacity. That extra
capacity would only be required to meet the increased peak
demand and therefore is used very infrequently [1]. Integration
of information technology into the power grid (in the smart grid
paradigm) alleviates this challenge by enabling the exploitation
of demand side flexibility to reshape the consumption to meet
the supply or network constraints (i.e., by flattening demand or
by balancing against renewable generation). Consequently, a sub-
stantial body of research has focused on proposing demand
response (DR) algorithms to coordinate EV charging and establish
their benefits (a review of various DR algorithms for charging coor-
dination is given in [2–5]). However, one of the main limitations of
such proposed DR algorithms is their potentially unrealistic
assumptions about the EV owner behavior (e.g., time of availability

of EV, sojourn times and the fraction of the sojourn time that is not
spent for charging and is named idle time). To design an efficient
and practical DR algorithm, it is necessary to accurately under-
stand the flexibility stemming from EVs and how to influence it
(through price based and incentive based schemes) to maximize
DR benefits. However, despite various efforts in proposing DR algo-
rithms, EV flexibility characteristics as DR’s main asset have not
been quantitatively analyzed. We believe such analysis can pave
the way to more realistic demand response schemes (price-based
or incentive based DR) in order to facilitate EV integration in the
grid and therefore is the focus of this paper.

1.1. Objectives and contributions

Understanding the flexibility characteristics, the influencing
factors, and the motivation for its exploitation is an inevitable part
of designing a realistic DR algorithm. Flexibility, despite its appar-
ent simplicity, is neither straightforward to analyze nor to
quantify.

We pursue two objectives in this paper. Our first objective is to
perform an in depth analysis of the flexibility characteristics of EVs
based on a reasonably large real-world dataset (which to the best
of our knowledge amounts to the largest dataset reported in liter-
ature, see Section 2.1 for further details). Our second objective is to
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quantify the flexibility exploitation and identify how the observed
flexibility is utilized for various objectives (e.g., load flattening and
load balancing against renewable (energy) sources) and whether
there is any typical pattern in its exploitation. More precisely, we
aim to answer the following research questions:

1. Do EV owners have specific habits to charge their cars (e.g., taking
their cars to a charging station at particular times of the day)? To
answer this question, we characterize the EV charging behavior
by clustering the arrival and departure time combinations, as
such identifying three behavioral clusters in our EV charging
data (Section 2.2).

2. Are the characteristics of the charging sessions (e.g., arrival,
sojourn and idle times) sensitive to seasonal changes or weekdays?
To address this question, we systematically analyze the charac-
teristics of the charging sessions in each behavioral cluster on
weekdays and weekends and across various seasons. We also
characterize the flexibility stemming from the sojourn times
of EVs that are longer than the time required to (fully) charge
their battery (Section 2.3).

3. How is flexibility (in terms of amount, time and duration of the
shifted energy) exploited? Which aspect of flexibility (time and
duration of availability or amount of deferrable energy) is more
useful at various times of the day? We address these questions
by considering two case studies (i.e., load flattening and load
balancing scenarios) to investigate to what extent the observed
flexibility would be exploited. To do so, we propose two mea-
sures and an algorithm to quantitatively analyze when flexibil-
ity is used in terms of the EV load volume as well as amount of
time the load is deferred (Sections 3.3 and 3.4).

1.2. Related work

Estimating the EV charging load to assess its impact on the
power grid has been the primary focus of research in facilitating
EVs integration to the grid. In initial studies, before the wide-
spread use of EVs, probabilistic models of driving behavior (with
conventional ICE cars) were used to characterize a charging ses-
sion. This was done by estimating arrival and departure patterns,
energy requirements and the covered distance in between trips.
For example Lampropoulos et al. [6] derive an EV charging data
profile from statistical characteristics of the driving behavior of
conventional ICE cars. Clement-Nyns et al. [7] base their analysis
on extrapolation of non-EV car usage in Belgium. Paevere et al.
[8] model the spatio-temporal impact of EV load based on a linked
suite of models of future EV uptake, their travel and charging/dis-
charging models. Grahn et al. [9] derive EV charging behavior from
non-EV driving behavior in Sweden. Pashajavid et al. [10] derive
the demand profile of EVs from traveling and refueling information
of non-EV in Tehran, and a more recent study [11] estimates pos-
sible states of EVs, regarding their demand, location and connec-
tion period, based on synthetic data which mimics reality.

Later studies, when EV penetration had increased, relied on the
availability of EV charging datasets to use data-driven approaches
to model the charging behavior of EVs and assess their impact on
the grid. For instance, Xydas et al. [12] characterize the charging
demand of EVs by statistically analyzing and clustering a dataset
of 22k sessions in UK. Khoo et al. [13] derive the impact of EV
charging on peak load based on around 5k sessions from an Aus-
tralian field trial and establish the expected impact on the total
power demand in 2032–33 for the state of Victoria. Brady et al.
[14] use a probabilistic charging module to translate the travel pat-
terns of EVs into the respective power demand of the vehicles.
Quiròs-Tortòs et al. [15] and Navarro-Espinosa et al. [16] use the
probability distribution of start charging time and energy
demanded during a connection of charging sessions in a one-year

EV trial in Ireland to obtain the EV load demand and assess their
impact in the low voltage distribution grid. The aforementioned
works focus mainly on analyzing the impact of EVs on the load
curve and do not provide any quantitative analysis of the flexibility
characteristic of EV charging sessions. The objective of our analysis
presented here rather is to quantify the flexibility of the EV load,
and quantitatively study user behavior.

User modeling (not focusing on flexibility) has been the subject
of earlier works to assess the influence of charging behavior of dif-
ferent user categories on the load curve. For example, Franke et al.
[17] examine the psychological dynamics underlying charging
behavior of EV users. Spoelstra [18] aims at understanding the
charging behavior of EV users and the factors constituting such
behavior. Khoo et al. [13] have modeled the charging sessions for
households and EV fleets during weekends and on weekdays in
terms of arrival times and energy demands. Quiròs-Tortòs et al.
[19] produce probability distribution functions (PDF) of different
charging features (e.g., start charging time) for both weekdays
and week-ends based on 68k samples from 221 residential EV
users. They further discuss the effects of the EV demand on future
UK distribution networks. Similarly, Richardson et al. [20] produce
PDF of connection times and daily energy requirements of EV
based on the charging behavior of 78 users for a duration of 1 year.
Helmus et al. [21] distinguish a priori defined different user types
(residents, commuters, taxis, etc.) and characterize them in terms
of EV charging session start and end times and the associated
energy needs. Similarly, Aunedi et al. [22] characterize the charg-
ing behavior and the demand diversity of two predefined user cat-
egories: residential users and commercial users. Instead of defining
the user categories a priori, Xydas et al. [12] cluster the observed
charging sessions into distinct types of behavior. They derive
aggregate models for three specific geographical areas, character-
ized by different clusters of ‘‘typical EV charging demand profiles”.
Similar characterization of charging session timing is presented by
Kara et al. [23]. Similar to [12,23] (but using different clustering
technique), we cluster the EV charging sessions into behavioral
clusters. However, our work differs from the aforementioned
papers: instead of focusing on the impact of EVs on the load curve,
we characterize the flexibility stemming from the EVs as well as
how such flexibility is used (in terms of both amount and duration)
to flatten the load or balance against renewable energy.

Quantification of demand side flexibility and assessing its
impact on alleviating the EV charging burden on the grid has been
tackled before. Aunedi et al. [22] characterized the flexibility of EV
charging demand in terms of the amount of load shifted in time
from the peak consumption without compromising the ability of
EV users to make their intended journeys. Their analysis suggested
that it is possible to shift 70–100% of EV demand from peak hours
towards the night. Kara et al. [23] defined the flexibility matrix as
the fraction of total connection time that is not spent on charging.
They presented the variation of this measure over different
months. Teng et al. [1] defined the potential flexibility of EV
demand as the amount of the shifted energy in the coordinated
vs. the uncoordinated charging. They further establish the benefits
of this flexibility in reducing carbon emissions and cost of integra-
tion of renewable energy sources (RES) through appropriate mea-
sures. Pavić et al. [24] estimated the EV flexibility benefits for
providing spinning reserve services through matrices expressed
as operational costs, environmental benefits and reduced wind
curtailment. Salah et al. [25] used the parking data from a car park
in southern Germany, which is mainly used for shopping and
working. They modeled parking duration distribution for two types
of parking behavior: shopping and workplace. They inferred the
flexibility thereof by assuming an average EV charging time of
45 min at 11 kW per car. Kheserzadeh [26] inferred the probability
of availability of EVs in the parking lots for different EV owners
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