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a b s t r a c t

In most cases, the power systems are well-conditioned and the power flow problem (PFP) can be solved
by using the famous Newton or Newton-based methods. However, in some cases, the conditions of the
power systems are ill and the above-mentioned methods are poorly converged or even diverged. This
paper presents application of corrected Levenberg-Marquardt algorithm with a non-monotone line
search for solving the PFP in the ill-conditioned power systems. The presented algorithm is evaluated
on the case studies ranging from small to large (30-bus, 57-bus, 118-bus and 2383-bus). Simulation
results show the proposed approach converges in all of the case studies. Moreover, application of the pro-
posed method for solving the PFP in ill-conditioned power systems can significantly reduce the CPU time
and number of iterations in comparison with the benchmark methods.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Previous works

Solving the power flow problem (PFP) is one of the fundamental
issues used in the steady state analysis of power systems. Using
digital computers to solve PFP started in mid 1950s [1]. Since then,
different algorithms have been used in power flow (PF) calcula-
tions. The developments of these algorithms are mainly compared
by the basic requirements of the PFP calculations. These require-
ments and indices are as follows:

� The convergence characteristics
� The computing efficiency (CPU time) and memory requirements
� The flexibility and reliability

One of the classical techniques for solving the PFP is based on
Gauss–Seidel technique (GST). The number of the iterations in
GST is high and its convergence characteristic is poor [2]. The most
famous and popular technique for solving the PFP is Newton’s
technique (NT). In 1956, the studies for developing the PFP calcu-
lations were started by Ward and Hale [3]. The effective starting
processes for using Newton’s method in the PFP are presented in
[4–7]. Many literatures have been based on the traditional NT.
Some of these methods are decoupled technique, fast-decoupled

technique (FDT) and the second order Newton’s method [8–11].
Ref. [12] presents a robust FDT for solving the PFP that is suitable
for systems with high r/x ratio lines.

Authors of [13] have presented a second order PF method using
equations of current injection instead of classical rectangular PF
equations. Ref. [14] presents an iterative technique for PFP to
improve the computation complexity (CPU time and number of
iterations). In this technique, impedance matrix ðZbusÞ has been
used instead of admittance matrix ðYbusÞ.

Authors have recently published a paper on using high-order
Newton-like methods for solving the PF equations [15]. The main
capabilities of these methods are having simple structures, being
faster than the traditional NT and significantly reducing the CPU
time.

The main objectives of solving the PFP are to determine the
voltage magnitude and voltage phase, as well as reactive and real
powers of each bus in a power system.

By using the Newton’s method or Newton-like methods [15]
during the solution of the PFP, the Jacobian matrix may become
non-singular, near singular or singular:

� Non-singular Jacobian matrix (jJj– 0)

In this case, the PFP solution exists and is obtainable using a flat
initial guess. When the Jacobian matrix of a power system is non-
singular, the system is named well-conditioned and the PFP can be
solved by the traditional NT and other Newton-like methods [15].
In this situation, the number of iterations in the PFP solution is
small.
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� Near singular or singular Jacobian matrix (jJj � 0 or jJj ¼ 0)

In these situations, the PFP solution exists, but using the tradi-
tional GST, NT and Newton-like methods for solving the PFP will
cause slow convergence or even divergence of the solution. The
power system with near singular or singular Jacobian matrix is
named bad-conditioned or ill-conditioned [16,17].

Some reasons may lead to change the condition of the power
system to ill condition. Some of these reasons are position of the
swing bus, installation of some equipment such as flexible AC
transmission system (FACTS) and high ratio of r/x in radial net-
works. The solution of the PFP in the ill-conditioned power systems
is very sensitive to small changes in the parameters of the Jacobian
matrix [18,19].

The Iwamoto method is one of the vastly applied techniques
being used for solving the PFP in ill-conditioned power systems
[20]. The main idea behind the Iwamoto method is to find the opti-
mal multiplier parameter to minimize the power residuals (DP and
DQ ). Many other literatures have focused on solution of the PFP in
the ill-conditioned power systems [21–27]. Ref. [28] has used the
concavity theory to solve an optimal multiplier PFP with low volt-
age solutions. In this method, polar coordinate system has been
replaced instead of the rectangular coordinate one that can sim-
plify the task further. The replaced polar system has applied the
second order power flow equations for reducing the CPU time.
Authors in [29] have used the quadratic discriminant index to
enhance optimal multiplier power flow technique for finding low
voltage solutions at the maximum loading point.

The Levenberg-Marquardt (LM) technique presented in [30] is a
reliable and efficient method for solving the PFP in ill-conditioned
systems. Ref. [18] has presented a continuous version of the New-
ton’s algorithm for solving the PFP in ill-conditioned power sys-
tems using a set of autonomous ordinary differential equations
(ODE). Moreover, some methods based on NT and LM method have
been presented in [31,32].

We have recently presented a high-order Levenberg-Marquardt
method to solve the PFP in ill-conditioned power systems [33] and
shown that by using the controlling parameters of this method, the
number of iterations and CPU time can be decreased. In the previ-
ous work of authors [33], the rate of convergence is four but in the
presented method, the rate of convergence is global.

1.2. Contribution & paper organization

The main contribution of this paper is to present an algorithm
for solving the PFP in ill-conditioned power systems that can
reduce the calculation time and number of iterations. The proposed
approach is based on a mathematical method which is termed cor-
rected Levenberg–Marquardt technique with a non-monotone line
search [34] but application of this mathematical approach in a
practical power system needs some requirements as follows:

(a) Modification of the method based on the structure and char-
acteristics of PFP in the power systems.

(b) Presentation of a proper algorithm to apply the modified for-
mulation to solve the PFP in the power systems.

It will be shown that the proposed method converges in all of
ill-conditioned power systems with high condition numbers.

This paper is organized as follows: Section 2 presents the con-
cepts of well- and ill-conditioned power systems based on the con-
dition numbers of systems. The mathematical formulation of the
method is introduced in Section 3. In Section 4, the proposed algo-
rithm for solving the PFP in ill-conditioned systems is presented.
The case studies and their condition numbers are listed in Section 5.
Simulation results of the proposed approach are reported and com-

pared with some benchmark methods in Section 6. Finally, con-
cluding remarks are presented in Section 7.

2. Ill- and well-conditioned systems

Consider a system with the set of simultaneous equations:

Xn
l¼1

jilxl ¼ v i i ¼ 1;2; . . .n ð1Þ

That can be written in the matrix form as follows:

JX ¼ V ð2Þ
In the equations of this system, J (½jil�) is the coefficient matrix

and X and V are columnmatrices. There are some indices for recog-
nition of the ill-conditioned systems from the well-conditioned
one. The most famous index in this area is the condition number
(CN) that is presented by Von Neumann and Goldstine [16]:

CN ¼ nmax

nmin
ð3Þ

where nmin and nmax are the smallest and largest eigenvalues of the
coefficient matrix, respectively. As the condition number increases,
the degree of the ill-conditioned system grows as well [15,21].

3. Presentation of non-monotone line search with corrected
Levenberg–Marquardt (NLS-CLM) technique

3.1. Background

Consider the system of algebraic nonlinear equations:

FðxÞ ¼ 0 ð4Þ
The Levenberg–Marquardt (LM) method is a conventional tech-

nique for solving the algebraic nonlinear equations of an ill-
conditioned system. At each iteration:

/LM
k ¼ �ðJTk Jk þ kkIÞ�1

JTkFk ð5Þ

xkþ1 ¼ xk þ /LM
k ð6Þ

where kk is nonnegative parameter, Fk ¼ FðxkÞ, Jk is Jacobian
matrix of Fk at xk. Note that to dominate the difficulty in case
of singularity or near singularity of JTk Jk, the parameter kk is intro-
duced in Eq. (5) [34,35]. In particular, when kk ¼ 0 and Jk is non-
singular, the LM method will be changed to Gauss–Newton (Eqs.
(7) and (8)):

/GN
k ¼ �ðJTk JkÞ

�1
JTkFk ð7Þ

xkþ1 ¼ xk þ /GN
k ð8Þ

Ref. [36] has suggested a corrected LM technique for the singu-
lar value system of nonlinear equations and [37] recommended a
modified LM technique. At each iteration, the modified LM tech-
nique firstly obtains /LM

k by solving the following algebraic linear
Eqs. (9)–(11).

kk ¼ lkkFkkd ð9Þ
where d 2 0;ð 2� and lk > 0

#LM
k ¼ �ðJTk Jk þ kkIÞ�1ðJTkFk þ kk/

LM
k Þ ð10Þ

xkþ1 ¼ xk þ #LM
k ð11Þ

Ref. [38] has proposed a LM technique with a non-monotone
second-order line search, which can be written as follows:
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