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a b s t r a c t

The increasing penetration of intermittent renewable energy poses plenty of challenges to electricity net-
works. Moreover, following the applications of intelligent electricity networks, demand response (DR)
has attracted a great deal of attention due to its positive effects on shaving peak demands and balancing
power supply and demand. On the other hand, when DR reaches a critical market level, the market
behavior of DR becomes a meaningful uncertainty to the networks as well. Therefore, power transmission
expansion planning (TEP) becomes a complicated decision-making process requiring risk analysis. This
paper proposes a probabilistic approach to TEP contemplating risk. The conventional reliability criterion
is replaced by a risk constraint. In addition, the TEP problem is decomposed into a master investment
problem and two slave subproblems, i.e., optimal operation and feasibility check subproblems. The pro-
posed TEP model is tested on the Garver’s six-bus and the modified IEEE 24-bus RTS and Polish 2383-bus
systems. According to the numerical results, the proposed TEP model is superior compared to the conven-
tional reliability-driven TEP from three perspectives: (1) It has incorporated a risk constraint and hence
can help network planners understand the variants of risk and provide the opportunity to make trade-offs
between cost, reliability and risk. (2) It still enforces the reliability criterion and is more cost-effective
when the wind power uncertainty becomes higher in the future. (3) It allows risk-analysis, giving
decision-makers the flexibility to choose a plan according to their individual risk-aversion levels and
understand the multiple outcomes.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Wind power has increased significantly over the past decades
due to the concern on climate change. However, wind power is
heavily dependent on meteorological conditions (i.e., wind speed
variations), and its outputs cause unpredictable power flow fluctu-
ations on transmission lines [1]. Moreover, wind resources are
often high in remote locations, while networks tend to be well
meshed in heavily populated areas [2]. A one well-known fact is
that there is lack of transmission capacity to integrate the large-
scale distant wind farms into power systems [3]. This means that
in some cases wind energy might have to be curtailed. How to rein-
force and expand a power network to absorb the intermittent wind
power and satisfy the growing energy demand is therefore of sig-
nificance. Power transmission expansion planning (TEP) refers to
when, where and how many lines should be built in order to meet
the growing energy demand [4,5]. Conventionally, TEP is formu-
lated as a cost minimization problem, subject to the reliability cri-
terion that encompasses security and adequacy [6]. Moreover, the

power industry deregulation and the increasing penetration of
intermittent renewable energy have brought in many uncertainties
to TEP [7]. Meanwhile, demand response (DR) has attracted signif-
icant attention over the past few years in terms of how to improve
the controllability and flexibility of the network, such as using DR
to shave peak demand or balance renewable energy fluctuation.
When DR reaches a critical market level, the inaccuracy of DR
would inevitably pose challenges to TEP as well [8].

DR is defined as adjustment in electricity consumption by end-
use customers (including load increase and decrease), in response
to changes in market prices, incentive payments or network relia-
bility signals [9]. Generally speaking, DR can be classified into two
types: price-based DR (PBDR) and incentive-based DR (IBDR) [10].
With regard to PBDR, customers can actively change their demand
in response to price signals (e.g. time-of-use tariff). With regard to
IBDR, system operators have the contractual authority to curtail
customer power load directly when necessary. Or customers
receive financial compensations if they reduce electricity con-
sumption voluntarily when requested. Since DR may have mean-
ingful impacts on TEP, DR resources and their economic values
should be carefully addressed. Please be noted that in this paper
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DR only refers to incentive-based DR only (interruptible load)
(IBDR). In addition, we do not assume that a utility is allowed to
totally curtail the demand of a node. The load aggregators are
assumed to represent energy end users to participate in market
operations with the independent system operator (ISO). In other
words, load aggregators integrate the portfolio of interruptible
loads at nodes and act as a representative that manages interrupt-
ible electric appliances (e.g. hot water systems, swimming pool
pumps) of end users. This load integration can make the summed
capacity of many small-scale interruptible loads be large enough
to trade energy or provide network support services in pool mar-
kets. The load aggregator signs a contract with interruptible con-
sumers, in which the upper limit, cost, and permitted hours of
load curtailment are specified. The advanced communications net-
works in smart grids are the foundation for the bi-directional com-
munication, monitoring, and control.

TEP is a complicated decision-making process. Network plan-
ners need to understand the multiple choices they have and the
multiple outcomes related to uncertainties in future (e.g. load
growth, bidding strategies of power generation companies or DR,
closure or installation of power generation units) [11]. In terms
of how to handle uncertainties, TEP can be classified into three
types [12]: (1) deterministic approach, where the worst-case is
modelled; (2) probabilistic approach, where a plan is expected to
be optimal in the statistical sense (i.e., calculating the mean value);
(3) risk-based approach, where comprehensive risk analysis is con-
ducted. Risk analysis means studying the different scenarios and
their optimal solutions, in order to obtain the most robust solution
based on individual needs [13].

Generally speaking, TEP can be solved by mathematical
approaches or heuristic based approaches. Mathematical program-
ming methods have strict requirements on the model itself. For
example, the problem or the continuous relaxation of the problem
should be convex. The mathematical programming methods can
provide more clues on the quality of the final solution, but they
might be trapped by local optima in some cases [14]. On the con-
trary, heuristic programming methods are free from problem for-
mulation difficulties and can escape from premature local optima
(i.e., stochastic global search). The drawback of heuristic methods
is that the quality of the solution cannot be guaranteed and inten-
sive computation efforts are required [14,15].

In the literature, many efforts are made to address uncertainties
or risks involved in TEP. For instance, in [16], a Benders decompo-
sition approach is proposed to solve TEP, and load and wind cur-
tailment costs are modelled. Ref. [17] proposes a methodology
for planning the optimal reliability indices of system components.
The non-sequential Monte Carlo (MC) simulation method is used
and the model is solved by the particle swarm optimization
(PSO) algorithm. Ref. [18] proposes a criticality index in transmis-
sion system planning, and then a deterministic TEP model is pro-
posed in deregulated electricity markets. Ref. [19] proposes a
novel heuristic reliability algorithm, and Benders decomposition
has been employed to solve the formulated mixed-integer nonlin-
ear programming problem (MINLP). Ref. [20] applies the risk of not
meeting load by chance constraints into the AC power flow equa-
tions as a set of convex equations. Ref. [21] proposes a planning
model in association with air pollution control and uncertainty
analysis. Ref. [22] proposes a least cost generation planning model
with wind power plant and emission. The differential evolution
algorithm is employed to solve the formulated nonlinear model.
Ref. [23] proposes an innovative robust method for addressing
uncertainties in electric power system planning. Ref. [24] presents
a market-based TEP model, which can compute the probability
density function of nodal prices. The model is mean value based
and selects a final plan after risk assessment. In [25], a multi-
year TEP planning model is proposed, and congestion metrics is

used to measure changes in nodal prices and line congestions.
Ref. [26] proposes a reliability assessment method for renewable
distributed generation such as wind power. Ref. [27] presents a
stochastic coordination of generation and transmission expansion
planning. The Monte Carlo (MC) simulation method is applied to
consider uncertainties of outages of generating units and transmis-
sion lines as well as long-term load forecasting. The expected value
of objectives is obtained after MC simulations converge. Ref. [12]
presents a generation and transmission expansion model, in which
a risk factor based on the mean-variance Markowitz theory is
incorporated. The expected value of perfect information is
obtained. Ref. [28] presents a coordinated planning model for wind
power integration while considering static voltage stability con-
straints. Ref. [29] proposes a chance constrained TEP model to
tackle the uncertainties of load and wind power, and is computa-
tionally efficient. Ref. [30] considers an upper bound on total load
shedding, which helps to identify planning schemes that have an
acceptable probability of load curtailment. Ref. [31] proposes a
chance-constrained TEP. Ref. [32] proposes a risk-based approach
to TEP under deliberate outages. The network vulnerability against
intentional attacks is addressed subject to budgetary limits. Ref.
[33] has incorporated the risk of blackouts into the cost minimiza-
tion in probabilistic TEP. The problem is solved by a multi-
objective particle swarm optimization method. Ref. [34] presents
a risk/investment driven TEP model with multiple scenarios. Their
models can provide network planners with a meaningful risk anal-
ysis, which enables them to determine the required investment at
a permissible risk level. Unfortunately, the above-mentioned mod-
els have not taken into account the optimality of DR resources,
which are emerging applications in smart grids. Moreover, Ref.
[10] presents a probabilistic TEP model considering large-scale
wind farms integration and incentive-based DR. The wind speed
correlation between wind farms is modelled by a multi-state wind
farm model. Ref. [35] proposes a comprehensive generation and
transmission planning model while considering DR as an option
for reducing operation costs. However, these references have not
taken into account the upward DR (load increment). As a result,
in their models, the DR’s role in balancing wind power fluctuations
(e.g. underestimated wind power outputs) is neglected.

In this paper we have proposed a probabilistic TEP model incor-
porating a risk constraint and DR. We extend the work of [30], for-
mulate a risk constraint which can help to obtain optimal planning
schemes that have an acceptable probability of load curtailment
bounded by a threshold. Rather than only providing a binary
answer to the system reliability (i.e., either acceptable or unaccept-
able reliability), this constraint gives a quantitative measure of sys-
tem reliability and distinguish between conditions that are both
considered as reliable but with different reliability levels. More
importantly, the risk constraint can capture the probabilistic nat-
ure of system behaviors. It can provide network planners with an
opportunity to conduct risk analysis. Low-probability but high-
loss scenarios can be explicitly addressed when adjusting risk-
aversion levels. Also, we develop a stochastic planning framework
incorporating the risk constraint and economic values and market
uncertainties of DR, including upward and downward DR. This
framework is a useful decision-making support tool, helping net-
work planners comprehend the variants of risk. Thus they can
make trade-offs between cost, reliability and risk according to their
individual needs. Besides, the original mixed integer nonlinear pro-
gramming problem is decomposed into a master problem and two
slave subproblems, and they are solved iteratively until no viola-
tion exists. The master problem is an integer programming prob-
lem that identifies the optimal expansion plans. The optimal
operations subproblem is to minimize the total operating cost
and the feasibility check subproblem is to minimize the probability
of load curtailment above the threshold. As a result, our model can
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