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Factorization of polynomials into irreducible factors is an important 
problem with numerous applications, both over commutative and 
over non-commutative rings. It has been recently proved by Bell, 
Heinle and Levandovskyy that a large class of non-commutative 
algebras are finite factorization domains (FFD for short). This 
provides a termination criterion for a factorization algorithms of 
elements in a vast class of finitely presented K-algebras, which 
includes the ubiquitous G-algebras, encompassing algebras of 
common linear partial functional operators.
In this paper, we contribute an algorithm to find all distinct 
factorizations of a given element in a G-algebra, with minor 
assumptions on the underlying field, and establish its complexity. 
Moreover, the property of being an FFD, in combination with the 
factorization algorithm, enables us to generalize the factorizing 
Gröbner basis algorithm for G-algebras. This algorithm is useful for 
various applications, e.g. in analysis of solution spaces of systems 
of linear partial functional equations with polynomial coefficients. 
Additionally, it is possible to include inequality constraints for 
ideals in the input.
The developed algorithms are accompanied by freely available 
implementations and illustrated by interesting examples.
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1. Introduction

Notations: Throughout the paper we denote by K a field. In the algorithmic part we will assume K
to be a computable field. N0 = N ∪ {0} is the set of natural numbers including zero. For a K-algebra 
R we denote by U (R) the group of invertible elements (units) of R , which is nonabelian in general. 
For f ∈ R we denote by R f = R〈 f 〉 the left ideal, generated by f . If no confusion arises, we also 
use the notation 〈 f 〉. Under NF( f , I) we mean the left normal form of an element f with respect 
to a left ideal I . The main focus in this paper lies in so called G-algebras, which are defined as 
follows.

Definition 1. For n ∈ N and 1 ≤ i < j ≤ n consider the units ci j ∈ K∗ and polynomials dij ∈
K[x1, . . . , xn]. Suppose, that there exists a monomial total well-ordering ≺ on K[x1, . . . , xn], such that 
for any 1 ≤ i < j ≤ n either dij = 0 or the leading monomial of dij is smaller than xi x j with respect 
to ≺. The K-algebra A := K〈x1, . . . , xn | {x j xi = ci j xi x j + dij : 1 ≤ i < j ≤ n}〉 is called a G-algebra, if 
{xα1

1 · . . . · xαn
n : αi ∈ N0} is a K-basis of A.

G-algebras (Apel, 1988; Levandovskyy, 2005) are also known as algebras of solvable type (Kandri-
Rody and Weispfenning, 1990; Li, 2002) and as PBW algebras (Bueso et al., 2001, 2003). G-algebras 
are Noetherian domains of finite global, Krull and Gel’fand–Kirillov dimensions.

We assume that the reader is familiar with the basic terminology in the area of Gröbner bases, 
both in the commutative as well as in the non-commutative case. We recommend Buchberger (1997), 
Bueso et al. (2003), Levandovskyy (2005) as literature on this topic.

Recall, that r ∈ R \ {0} is called irreducible, if in any factorization r = ab either a ∈ U (R) or b ∈
U (R) holds. Otherwise, we call r reducible. Also, r is called central, if ∀t ∈ R rt = tr holds.

Definition 2. We say that a domain A is a finite factorization domain (FFD, for short), if every nonzero, 
non-unit element of A has at least one factorization into irreducible elements and there are at most 
finitely many distinct factorizations into irreducible elements up to multiplication of the irreducible 
factors by central units in A.

A word of warning: at least since N. Jacobson (Jacobson, 1943), in ring theory (Cohn, 2006) a dif-
ferent definition of a factorization has been used. In the context of Definition 2 two elements are 
called associated if they differ (like in the classical commutative case) by a (central) unit. In this case 
one writes a ∼ b. Consider the following relation (called left similarity in Bueso et al., 2003) for a, b in 
a ring R: a ≈ b ⇔ R/Ra ∼= R/Rb as left R-modules. Then it can be proved that some noncommutative 
domains are even domains of unique factorization with respect to ≈ (we denote this by UFD≈). That 
is, if a1 · . . . · as = b1 · . . . · bt and ai, b j are non-units from a domain R , which cannot be written as 
a product of two units, then s = t and there exists a permutation σ such that ∀i ai ≈ bσ(i) holds. In 
order to realize, how different these two definitions of factorization and associatedness actually are, 
let us consider the following important cases.

(i) A free associative algebra K〈x1, . . . , xn〉 is an UFD≈ (e.g. Cohn, 1973, Theorem 6.3). Let n = 2, 
consider K〈x, y〉  f = xyx −x. Then one can show, that f = x(yx −1) = (xy −1)x are all factorizations 
of f up to central units. Moreover, from the main Theorem from Bell et al. (2017) it follows, that 
K〈x1, . . . , xn〉 is an FFD, but as we can see, it is not UFD∼ but UFD≈ .

(ii) A noncommutative left and right principal ideal domain is an UFD≈ (e.g. Bueso et al., 2003). 
This encompasses the case of Ore extensions D[x; σ , δ] of a division algebra D by a skew deriva-
tion (σ , δ) with σ ∈ Aut(D). Recall the first rational Weyl algebra B1 = K(x)[∂; id, d

dx ], which can 
be viewed as an Ore localization of the first Weyl algebra A1 = K〈x, ∂ | ∂x = x∂ + 1〉 at the set 
S = K[x] \ {0}. Then B1 is an UFD≈ , but it is not a FFD in the sense of Definition 2 because of 
the classical fact, that

∀(b, c) ∈C2 \ {(0,0)}, ∂2 =
(

∂ + b

bx − c

)
·
(

∂ − b

bx − c

)
,
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