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given element of A. The reduction modulo G allows a subalgebra
membership test. The algorithm also works for more general rings
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Partition identities R, in particular for a ring R C C((q)) with the property that f € R
Number theoretic algorithm is zero if and only if the order of f is positive. As an application,
Subalgebra basis we algorithmically derive an explicit identity (in terms of quotients

of Dedekind n-functions and Klein's j-invariant) that shows that
p(11n + 6) is divisible by 11 for every natural number n where
p(n) denotes the number of partitions of n.
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1. Introduction

Ramanujan (1921) discovered that

p(5n+4)=0 (mod 5) (M
p(7n+5)=0 (mod 7) (2)
p(11n+6)=0 (mod 11) 3)

for all natural numbers n € N where p(n) denotes the number of partitions of n. In Ramanujan (1919)
he lists the following identities from which (1) and (2) can be concluded.
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A similar “simple” identity for (3) is not known, although Lehner (1943) gave an identity in terms
of ad hoc constructed series A and C.
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Radu (2015) developed an algorithmic machinery based on modular functions. He first computed
generators My, ..., M7 of the monoid of all quotients of Dedekind n-functions of level 22 that only
have poles at infinity. For more details see Radu (2015). In terms of g-series, these generators are as
follows.
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Note that each of these series lives in Z((q)). By his algorithms AB and MW, Radu then computes a
relation

F =11(98t* + 1263t> + 2877t%> 4+ 1019t — 1997)
+ 1121 (1763 + 490t + 54t — 871) + 11z5(t> + 251t% + 488t — 614) (6)
where F is defined as on top of p. 30 of Radu (2015), i.e.,
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and t, z1, zp are given by
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