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a b s t r a c t 

The low-rank representation (LRR) can get essential row-representation of data and it is robust to illu- 

mination variation, occlusions and other types of noise. This paper presents a novel manifold embed- 

ding classification algorithm based on nonnegative low-rank representation for semi-supervised learning 

(MEC-NNLRR). In the proposed algorithm, label fitness, manifold smoothness and low-rank representa- 

tion are integrated, and the label information from the labeled data and the manifold structure from all 

data are fully and effectively utilized. Based on LRR and manifold learning, the proposed MEC-NNLRR 

can capture the global and local structure information of the observed data. The obtained nonnegative 

low-rank representation coefficients can be used as a graph similarity matrix. Considering the physical 

interpretation of the graph matrix, we impose the non-negativity constraint on the coefficients. In addi- 

tion, no matter whether the training samples or test samples are corrupted, the proposed MEC-NNLRR is 

little affected by noise. Extensive experiments on public image databases demonstrate that the proposed 

MEC-NNLRR is an excellent algorithm and achieves satisfactory results. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Biometrics is still one of the research hotspots in computer vi- 

sion and artificial intelligence. Because face recognition is simple 

and non-contact, it has been widely studied in the past decades. 

However, it is still very difficult to understand because of its high 

dimensionality. As we can see, the time and memory consump- 

tion is usually unacceptable to deal with the high-dimension data, 

which is hard to be processed by some existing algorithms. Dimen- 

sion reduction can obtain efficient low dimensional representation 

of high-dimension data, which is helpful for calculation, classifi- 

cation, storage and visualization. Therefore, a lot of algorithms for 

dimension reduction have been proposed [1–5] . The most classical 

linear dimensional reduction algorithms are PCA and LDA. PCA is 

an unsupervised dimension reduction method, which does not use 

the class label information of the observed data. LDA is a super- 

vised method by utilizing the class label information in the fea- 

ture extraction process, which is useful for classification recogni- 

tion task [6] . If enough labeled data are available, the recognition 
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performance of the supervised methods is usually better than that 

of the unsupervised methods. 

The image data usually exists in a nonlinear low-dimensional 

sub-manifold space which is hidden in the original high- 

dimensional image space. However, the intrinsic nonlinear struc- 

ture of the observed data is usually difficultly to be properly dis- 

covered by the linear dimension reduction methods. In order to 

reveal the essential nonlinear manifold structure of image data, 

many nonlinear manifold learning algorithms have been presented 

[7–9] . Locally linear embedding (LLE) [7] , ISOMAP [8] and Lapla- 

cian eigenmaps [9] are three most representative manifold learn- 

ing algorithms. These manifold methods can reveal the essential 

structure of the data effectively and achieve satisfactory perfor- 

mance. However, these methods usually suffer from the so-called 

out-of-sample problem. That is to say, no projection matrix can 

be available in these methods. When we have a new image data, 

we have to retrain all the image samples. This is very time con- 

suming. Thus the methods are not suitable for real time recog- 

nition and classification. In order to solve this problem, many 

improved manifold learning algorithms have been proposed [10–

16] . A patch alignment based manifold learning framework was 

proposed in [10] , which included two stages: part optimization 

and whole alignment. Chen et al. [11] presented a supervised or- 

thogonal discriminant subspace projection (SODSP) algorithm. In 

SODSP, a new weight matrix is constructed, and the neighborhood 
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structure information is kept. At the same time, an orthogonal con- 

straint is imposed into a graph based maximum margin analysis al- 

gorithm. In order to deal with the occlusions and illumination vari- 

ations, a manifold regularized local sparse representation (MRLSR) 

method was proposed [12] . It is the key idea for MRLSR to keep 

group sparsity. He et al. [13] presented a locality preserving projec- 

tion (LPP) algorithm. In LPP, the obtained projection matrix can de- 

scribe well the image manifold structure. Cai et al. [14] presented a 

locality sensitive discriminant analysis (LSDA) algorithm. Yan et al. 

[15] gave a unified graph embedding framework, in which a novel 

marginal fisher analysis (MFA) algorithm was proposed. Both the 

intrinsic graph and the penalty graph were built respectively in 

MFA. A novel face image recognition method [16] was presented 

in which the coupled mappings are firstly established, and then 

they are used to respectively project the low-resolution images and 

high-resolution images to a unified latent subspace. 

Recently, the clean essential low-rank data matrix can be ob- 

tained from the corrupted observed data matrix by low-rank re- 

covery technique, which is attracting more and more researchers’ 

attention. We usually encounter two problems in image cluster- 

ing: how the samples from the different subspaces can be cor- 

rectly clustered into their respective subspace and how it gets rid 

of possible outliers. In order to solve the two problems, Liu et al. 

[17] proposed a low-rank representation (LRR) method. In LRR, the 

lowest rank representation of all observed data can be obtained 

by solving the nuclear norm optimization problem. Zhang et al. 

[18] presented a regularized low-rank representation (rLRR) frame- 

work, which can effectively preserve the similarities of principal 

and salient features. Based on the rLRR framework, low-rank sim- 

ilarity preserving projections (LSPP) are further presented for fea- 

ture extraction. By combining low-rank representation with graphs 

and kernel trick, a novel semi-supervised kernel low-rank repre- 

sentation graph (SKLRG) is proposed to achieve robust classifica- 

tion for wide range of datasets [19] . Previous study [20] showed 

that the nonnegative constraint in LRR not only allowed people 

to attain interpretable representation coefficients but also can led 

to perfect result. In order to discover the essential structures of 

the data, a nonnegative low-rank and sparse (NNLRS) graph algo- 

rithm was proposed [21] , in which both the global structure in- 

formation and the local structure information can be captured. Lu 

et al. [22] proposed a graph-regularized low-rank representation 

destriping method, which can effectively remove the effects of the 

striping noise. Xu et al. [23] presented a discriminative transfer 

subspace learning method based on low-rank and sparse represen- 

tation, in which the problem about unsupervised domain transfer 

learning is well addressed. In order to fully use the geometrical 

structure of data, Peng et al. [24] presented a manifold low-rank 

representation (MLRR) algorithm. 

Because the class label information is utilized in the supervised 

learning methods, they usually outperform the unsupervised learn- 

ing methods. We have only a small amount of labeled data in 

the practical application. This is because it takes a large amount 

of time to collect and organize the labeled data. However, there 

are still lots of unlabeled data in real life, and they can be eas- 

ily obtained. In order to take full use of the limited labeled data 

and the abundant unlabeled data for better classification recog- 

nition, many semi-supervised algorithms were proposed [25–28] . 

A unified framework was proposed for semi-supervised and unsu- 

pervised learning, in which the new samples can be mapped and 

effectively classified [25] . Gao et al. [26] proposed a stable semi- 

supervised discriminant learning method (SSDL), in which the es- 

sential structure can be found. In semi-supervised learning, it is 

usually seldom studied for graph construction. In order to solve 

this problem, Yu et al. [27] proposed a novel semi-supervised clas- 

sification method based on random subspace dimensionality re- 

duction (SSC-RSDR). Zhao et al. [28] proposed a semi-supervised 

learning algorithm, in which both the global and local discrimina- 

tive information are well preserved. 

Inspired by manifold learning and low-rank representation, we 

present a novel manifold embedding classification algorithm based 

on nonnegative low-rank representation (MEC-NNLRR) for semi- 

supervised learning. In the proposed MEC-NNLRR, both the global 

structure information and local structure information of observed 

data are fully taken into account in graph construction. The global 

structure can be well emphasized by the low-rank constraint, and 

the local structure is preserved by the manifold, which is com- 

posed of the labeled data and a great deal of unlabeled data. 

The main contributions of the proposed algorithm are listed as 

follows. 

Firstly, label fitness, manifold smoothness and nonnegative con- 

straint are integrated into a framework. Secondly, the label infor- 

mation from the labeled data and the manifold structure informa- 

tion from all data are fully and effectively utilized. Thirdly, both 

the graph construction and label prediction are carried out at the 

same time. Lastly, the proposed MEC-NNLRR is robust to noise. 

This paper is organized as follows. In Section 2 , the related 

works are briefly reviewed. In Section 3 , the proposed method is 

described in detail. Section 4 discusses the experimental results on 

different face databases. The final section gives our conclusions. 

2. Related works 

In this section, we briefly review the references related to our 

proposed algorithm, which mainly include Gaussian fields and har- 

monic functions (GFHF) [29,30] and low-rank representation (LRR) 

[17] . GFHF is an effective method to deal with semi-supervised 

learning, and it is easy to be integrated with other methods, such 

as graph learning [31–33] , to obtain very promising results [34] . 

For semi-supervised learning, GFHF can propagate labels from la- 

beled samples to unlabeled ones in a mathematically tractable 

way. 

2.1. Gaussian fields and harmonic functions (GFHF) 

Suppose an observed data set A = 

[ a 1 , a 2 , · · · , a m 

, a m +1 , · · · , a n ] ∈ R d×n from c classes. There are 

m labeled samples and n − m unlabeled samples, where 

a i (i = 1 , · · · , m ) is the labeled data, a i (i = m + 1 , · · · , n ) is 

the unlabeled data, and d represents dimension. We define a label 

matrix Y ∈ R n × c as follows. 

Y i j = 

{
1 y i = j 
0 otherwise 

(1) 

where y i ∈ { 1 , 2 , · · · , c } , i = 1 , 2 , · · · , m . 

G = { A, W } is an undirected weighted graph, where W ∈ R n × n is 

a similarity matrix. The graph Laplacian matrix L is defined as 

L = D − W (2) 

where D is a diagonal matrix, and its diagonal elements can be 

obtained as follows. 

D ii = 

n ∑ 

j=1 

W i j (i = 1 , 2 , · · · , n ) (3) 

The prediction label matrix is denoted by F ∈ R n × c . The first m 

vectors from F are required to be close to the class label of labeled 

data. At the same time, the label matrix F should be as smooth as 

possible on the whole graph, which is consisted of labeled samples 

and unlabeled samples. The objective function of Gaussian fields 

and harmonic functions (GFHF) is given as follows. 

g(F ) = 

1 

2 

n ∑ 

i =1 
j=1 

∥∥F i · − F j·
∥∥2 

W i j + λ∞ 

m ∑ 

i =1 

‖ 

F i · − Y i ·‖ 

2 (4) 
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