
Knowledge-Based Systems 122 (2017) 75–89 

Contents lists available at ScienceDirect 

Knowle dge-Base d Systems 

journal homepage: www.elsevier.com/locate/knosys 

Efficient algorithms for mining colossal patterns in high dimensional 

databases 

Thanh-Long Nguyen 

a , b , Bay Vo 

c , d , ∗, Vaclav Snasel e 

a Division of Data Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam 

b Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam 

c Faculty of Information Technology, Ho Chi Minh City University of Technology, Ho Chi Minh City, Vietnam 

d College of Electronics and Information Engineering, Sejong University, Seoul, South Korea 
e Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 

708 33 Ostrava - Poruba, Czech Republic 

a r t i c l e i n f o 

Article history: 

Received 2 May 2016 

Revised 22 January 2017 

Accepted 23 January 2017 

Available online 25 January 2017 

Keywords: 

Bottom up 

Colossal patterns 

Data mining 

High dimensional databases 

a b s t r a c t 

Mining association rules plays an important role in decision support systems. To mine strong association 

rules, it is necessary to mine frequent patterns. There are many algorithms that have been developed 

to efficiently mine frequent patterns, such as Apriori, Eclat, FP-Growth, PrePost, and FIN. However, these 

are only efficient with a small number of items in the database. When a database has a large number 

of items (from thousands to hundreds of thousands) but the number of transactions is small, these al- 

gorithms cannot run when the minimum support threshold is also small (because the search space is 

huge). This thus causes the problem of mining colossal patterns in high dimensional databases. In 2012, 

Sohrabi and Barforoush proposed the BVBUC algorithm for mining colossal patterns based on a bottom- 

up scheme. However, this needs more time to check subsets and supersets, because it generates a lot 

of candidates and consumes more memory to store these. In this paper we propose new, efficient algo- 

rithms for mining colossal patterns. Firstly, the CP (Colossal Pattern)-tree is designed. Next, we develop 

two theorems to rapidly compute patterns of nodes and prune nodes without the loss of information 

in colossal patterns. Based on the CP-tree and these theorems, an algorithm (named CP-Miner) is pro- 

posed to solve the problem of mining colossal patterns. A sorting strategy for efficiently mining colossal 

patterns is thus developed. This strategy helps to reduce the number of significant candidates and the 

time needed to check subsets and supersets. The PCP-Miner algorithm, which uses this strategy, is then 

proposed, and we also conduct experiments to show the efficiency of these algorithms. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Since the problem of mining association rules was first set 

out in 1993 [1] , many algorithms for mining frequent (closed) 

patterns have been proposed, such as Apriori-based algorithms 

[2,8,14] , FP (frequent pattern)-tree based algorithms [9,10,15] , IT 

(itemset tidset)-tree based algorithms [19,20,23,24,25] , bit vec- 

tors based algorithms [8,18,19] , N-lists and Nodesets based algo- 

rithms [4,5,6,7,11,21] . Moreover, mining frequent patterns in uncer- 

tain databases [12,13] has also been examined. These algorithms 

are based on items (i.e., they are based on 1-items to generate 2- 

itemsets, based on 2-itemsets to generate 3-itemsets, and so on) 

for mining frequent (closed) patterns. The main purpose of these 

∗ Corresponding author. 

E-mail addresses: nguyenthanhlong1@tdt.edu.vn (T.-L. Nguyen), 

bayvodinh@gmail.com , vd.bay@hutech.edu.vn (B. Vo), vaclav.snasel@vsb.cz (V. 

Snasel). 

is to improve the mining time and/or memory usage for mining 

frequent (closed) itemsets. However, they are only efficient when 

the number of items that satisfy the minimum support threshold 

(minSup, in this paper, and we use this to mean the minSup count) 

in the database is small. When the number of items that satisfy the 

minSup is large, this leads to a huge search space and these algo- 

rithms are then inefficient, even though they cannot run [26] due 

to resource limitations. To solve this problem, Zhu et al. [26] pro- 

posed a method for mining colossal patterns called the Pattern- 

Fusion algorithm. To overcome the huge search space, Pattern- 

Fusion uses an approximation approach to mine K good frequent 

patterns. This means that Pattern-Fusion may not mine all colos- 

sal patterns that satisfy Definition 4 (below). In 2010 Dabbiru and 

Shashi [3] proposed the CMP (Colossal Pattern Miner) algorithm 

for mining such patterns. Next, Sohrabi and Barforoush [16] pro- 

posed a method for mining colossal patterns in high dimensional 

databases in 2012. The authors also proposed the BVBUC algorithm, 

which uses a bottom-up strategy based on transactions. The BVBUC 

http://dx.doi.org/10.1016/j.knosys.2017.01.034 

0950-7051/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.knosys.2017.01.034
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2017.01.034&domain=pdf
mailto:nguyenthanhlong1@tdt.edu.vn
mailto:bayvodinh@gmail.com
mailto:vd.bay@hutech.edu.vn
mailto:vaclav.snasel@vsb.cz
http://dx.doi.org/10.1016/j.knosys.2017.01.034


76 T.-L. Nguyen et al. / Knowledge-Based Systems 122 (2017) 75–89 

joins 1-transactions together to generate 2-transactions, and so on, 

until the number of transactions reaches minSup (which means 

that the patterns in a set of transactions are frequent). Moreover, 

the authors also proposed a formula to prune branches that cannot 

expand to reach minSup to reduce the search space. 

Although BVBUC is faster than CMP and Pattern-Fusion it has 

some limitations, as follows: 

1. The patterns of a set of transactions are computed many times, 

and this makes BVBUC inefficient. 

2. BVBUC uses the downward closure property to prune items that 

do not satisfy minSup, but it does not remove transactions (af- 

ter removing infrequent items, some transactions do not con- 

tain any items). 

3. BVBUC generates a lot of duplications, and thus more time is 

needed to check these. 

4. BVBUC finds patterns based on a set of transactions (tidset) by 

computing the intersections among them. In fact, two tidsets 

only differ by one transaction if they have parent-child relation- 

ship. For example: tidsets {1, 2, 3} and {1, 2, 3, 4} only differ in 

transaction 4. In this case, if we have pattern X of tidset {1, 2, 

3}, we can get pattern of tidset {1, 2, 3, 4} by computing the 

intersection between X and pattern of transaction 4. 

5. In high dimensional databases, using bit vectors consumes 

more memory and time to join them. 

Based on some of the limitations of BVBUC, in this work we 

propose a new method for mining colossal patterns. The main con- 

tributions of this paper are as follows: 

1. We develop a method for computing the pattern of a set of 

transactions once. 

2. Based on the downward closure property, we remove 1-items 

for which their supports do not satisfy minSup. After that, we 

remove transactions that do not contain any item to reduce the 

number of transactions that need to be traversed. 

3. We use patterns at the parent level to compute patterns at the 

child levels to reduce the number of patterns that need to com- 

pute the intersections and reduce the duplications. 

4. We develop theorems to prune non-colossal patterns early in 

the process. 

5. We use dynamic bit vectors [18] instead of bit vectors to save 

memory and computational time. 

The rest of this paper is organized as follows. Section 2 presents 

some works related to frequent (closed) pattern mining, mining 

colossal patterns and an overview of the BVBUC algorithm. Section 

3 presents a theorem to compute the pattern from two sets of 

transactions and a theorem to quickly prune candidates, and pro- 

poses the CP-Miner algorithm for mining colossal patterns based 

on this. We also present a strategy for early pruning of the items 

and transactions based on minSup to reduce the search space. 

Section 4 presents a sorting strategy and pruning technique based 

on the parent-child relationships in the CP-tree. The PCP-Miner al- 

gorithm for efficiently mining colossal patterns is also developed. 

In Section 5 we compare the proposed algorithms with BVBUC 

with regard to runtime and number of nodes in the search trees, 

and discuss the results. Section 6 then gives our conclusions and 

some future research directions. 

2. Related works 

The problem of mining frequent patterns was first proposed by 

Agrawal et al. in 1993 [1] , and this is the main problem of asso- 

ciation rule mining. In 1994, Agrawal and Srikant developed the 

downward closure property to prune candidates that do not sat- 

isfy minSup [2] . The Apriori algorithm, a level-wise approach, was 

also proposed. Using the downward closure property, Apriori gen- 

erates candidate (k + 1)–itemsets from frequent k-itemsets and also 

uses this property to prune candidates. In 1997, Zaki et al. devel- 

oped the Eclat algorithm for mining frequent itemsets using the IT- 

tree (Itemset Tidset-tree) [23] . Eclat applies an in-depth first search 

scheme and vertical data format to mine frequent itemsets. The 

advantages of this approach are that it only scans the database 

once and rapidly compute the supports of patterns based on the 

intersections of tidsets. Because tidsets consume more memory in 

dense databases, in 2003 Gouda and Zaki proposed using diffsets 

instead to reduce memory usage and time [24] . The IT-tree was 

also used in CHARM [25] to mine frequent closed patterns. Early 

in the process CHARM uses subset checking to omit patterns that 

cannot be closed, and checks whether a candidate is closed or not 

using hash table. Diffsets are also used in another study [25] . In 

20 0 0, Han et al. proposed the FP-tree structure and used it for 

mining frequent patterns [10] . In this, the FP-tree compresses the 

database in a prefix tree and then uses projections in this to mine 

frequent patterns. The authors also used an FP-tree to mine fre- 

quent closed patterns [22] . Grahne and Zhu used an FP-array to 

reduce the number of traverses and projections in an FP-tree, and 

applied an FP-array to mine frequent (closed) patterns [9] . Bit vec- 

tor based algorithms were then also developed [8,17,18] . In 2007, 

Dong and Han proposed the BitTableFI algorithm for mining fre- 

quent patterns [8] . This is based on Apriori, but uses bit vectors 

to store tidsets of patterns and computes the supports of these by 

computing the intersections of bit vectors. The support of a pat- 

tern is the number of bits 1 in a bit vector. By using bit vectors, 

BitTableFI only scans the database once (Apriori scans the database 

k times, where k is the longest pattern). In 2008, Song et al. im- 

proved BitTableFI by using the subsume concept to quickly deter- 

mine the support of subsumed patterns, and thus the supports do 

not need to be computed for these patterns [17] . However, Bit- 

TableFI and its improved algorithm (Index-BitTableFI) use fixed bit 

vectors, which means that the number of bits in each bit vector 

does not change and is the number of transactions in the database. 

When the number of transactions in the database is large, bit vec- 

tors consume more memory to store and time to compute their 

intersections. In 2012, Vo et al. proposed the dynamic bit vector 

(DBV) concept, and used it to mine frequent closed patterns [18] . 

A dynamic bit vector is also a bit vector, but it removes zero bits 

at the beginning and end. The authors also proposed an algorithm 

for computing the intersection between two DBVs, and the way to 

determine whether a pattern is not frequent in the process of com- 

puting the intersections of DBVs. In 2012, Deng and Lv proposed 

a method for mining frequent patterns using the N-list [4] . N-list 

has a structure like an FP-tree (adding Pre and Post for each node, 

and not storing a header table as FP-tree does). Unlike FP-Growth, 

an N-list based algorithm (PrePost) uses a vertical data format to 

mine frequent patterns. An improved PrePost algorithm using the 

subsume concept to reduce the search space has also been pro- 

posed [21] , while N-lists have been used to mine frequent closed 

patterns [11] . Deng and Lv then proposed the Nodesets structure. 

Nodesets only use Pre (or Post) to compress the database, and the 

FIN algorithm uses this structure to mine frequent patterns. DiffN- 

odesets, a different Nodesets strategy that can reduce both mem- 

ory usage and computing time, was proposed in 2016 [7] . Yun et 

al. also proposed an LP-tree structure for mining frequent itemsets 

[15] . 

The above algorithms use item-extension to mine frequent 

(closed) patterns, but are only suitable when the number of fre- 

quent 1-items is small. When the number of frequent 1-items is 

large the search space is huge, making these algorithms inefficient. 

The concept of colossal patterns was thus developed to solve the 

problem of high dimensional databases (which cause the number 

of frequent 1-items to be large when minSup is small) [26] . The 



Download	English	Version:

https://daneshyari.com/en/article/4946232

Download	Persian	Version:

https://daneshyari.com/article/4946232

Daneshyari.com

https://daneshyari.com/en/article/4946232
https://daneshyari.com/article/4946232
https://daneshyari.com/

