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a  b  s  t  r  a  c  t

Materials  informatics  is a growing  field  in  materials  science.  Materials  scientists  have  begun  to  use  soft
computing  techniques  to  discover  novel  materials.  In order  to  apply  these  techniques,  the  descriptors
(referred  to  as features  in  computer  science)  of  a material  must  be selected,  thereby  deciding  the  resulting
performance.  As a  way  of describing  a material,  the properties  of  each  element  in the  material  are  used
directly  as the features  of the  input  variable.  Depending  on  the  number  of  elements  in  the material,  the
dimensionality  of  the  input  may  differ.  Hence,  it is  not  possible  to apply  the  same  model  to  materials
with  different  numbers  of  elements  for tasks  such  as  regression  or discrimination.  In the  present  paper,
we  present  a novel  method  of uniforming  the  dimensionality  of  the  input  that  allows  regression  or
discriminative  tasks  to  be performed  using  soft  computing  techniques.  The  main  contribution  of the
proposed  method  is  to provide  a solution  for  uniforming  the dimensionality  among  input  vectors  of
different  size.  The  proposed  method  is a variant  of the  denoising  autoencoder  Vincent  et al.  (2008)  [1]
using  neural  networks  and gives  a latent  representation  with  uniformed  dimensionality  of  the input.  In
the  experiments  of the present  study,  we  consider  compounds  with  ionic  conductivity  and  hydrogen
storage  materials.  The  results  of  the experiments  indicate  that the  regression  tasks  can  be  performed
using  the  uniformed  latent  data  learned  by  the proposed  method.  Moreover,  in  the  clustering  task  using
these  latent  data,  we  observed  distance  preservation  in  data  space,  which  is  also  the  case  for  the  denoising
autoencoder.  This  result  may  enable  the  proposed  method  to  be used  in  a broad  range  of  applications.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The development of materials informatics has resulted in signifi-
cant progress in the modeling and prediction of material properties,
thereby reducing the costs of real-world experiments, and is
becoming a promising research field for soft computing (for exam-
ple, [2–4]). By using soft computing techniques such as neural
networks, evolutionary and genetic algorithms, and fuzzy mod-
eling, materials scientists can more effectively search for novel
materials. These techniques are used alone and in combination with
quantum calculations for materials design. For example, a method
combining density functional theory and an evolutionary algorithm
was used to predict the crystal structure of LiBeH3 (Hu et al. [5]).

By organizing the data into a material database, researchers
can determine the relationships between material properties (for
example, conductivity, the critical temperature of superconductors,
and melting temperature) and the properties (for example, atomic
number, atomic mass, and electron negativity) of the elements
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in the material. The properties of elements or their combinations
are referred to as descriptors (or “features” in computer science).
Once the relevant features are obtained, the predictions of proper-
ties and the modeling of materials becomes easier. The literature
[6] describes five descriptor categories: constitutional, topological,
physicochemical, structural, and quantum-chemical. For instance,
Seko et al. [7] adopted the sum and product of the element proper-
ties, such as atomic number, atomic mass, and number of valence
electrons as features involved in the prediction of the melting tem-
perature of single and binary compounds. These are constitutional
descriptors. In addition, the use of sum and product operations is
based on the domain knowledge of the compounds, and is also
found in [8].

From the viewpoint of domain knowledge, we  introduce two
categories of materials feature representation: expert and naive.
Expert representation is preferable for a material property that has
a well-known mechanism or theoretical model. As such, many fea-
tures (descriptors) based on the underlying theory would be expert
representations (for example, Table 1 in [3]). In naive representa-
tion, we  generate features based on the properties of elements in a
compound, which are represented by a vector that consists of the
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Table 1
Comparison of generalization results for the test datasets on the linear regression
task.

Method RMSE Correlation

Proposed method 0.0872 ± 0.0045 0.862 ± 0.0142
Multi-layer autoencoder 0.168 ± 0.0128 0.251 ± 0.146
Denoising autoencoder 0.162 ± 0.0124 0.344 ± 0.120
Kernel PCA 0.148 ± 0.0241 0.476 ± 0.173

properties of elements. The advantage of the naive representation
is that it is applicable to material properties with poorly under-
stood mechanisms or theoretical models. In addition, it is simple
and easy to interpret. As such, we herein adopt the naive represen-
tation. While the naive representation has good characteristics, the
length of the vectors (namely, the dimensionality of the data) differs
depending on the number of elements in the compound. Therefore,
we cannot, for example, use the same model for compounds with
different numbers of elements in modeling and prediction tasks.
Thus, we propose a method of uniforming the dimensionality of
input data that allows us to perform tasks using regression and
discrimination methods.

Uniforming dimensionality is related to dimensionality reduc-
tion methods. Recently, a number of non-linear dimensionality
reduction methods have been proposed [9,10]. These methods
address the limitations of linear (traditional) methods, such as
principle component analysis (PCA) and multidimensional scaling.
Kernel PCA [11] and the multi-layer autoencoder [12] are well-
known examples. These linear and non-linear methods cannot,
however, be adopted as methods of uniforming dimensionality
because when these methods are applied to datasets of different
dimensionality, the resultant dimensionality of each dataset, even
though they may  be the same, has a different meaning. In addition,
these methods focus primarily on the dimensionality reduction
of data. As far as we know, there has been no previous study on
non-linear uniforming of the dimensionality of data. Therefore,
the present study may  be the first attempt to make uniform the
dimensionality of data while simultaneously considering both the
expansion and reduction of the dimensionality of data. Moreover,
if the data size is insufficient for learning, combining this data with
data of a different dimensionality will allow the overall data to be
learned.

In the neural network literature, the training algorithms of Deep
Belief Networks (Hinton et al. [13], Bengio [14]) and stacked autoen-
coders (Vincent et al. [15]) have brought about great progress.
An autoencoder consists of an encoding function, which maps the
input data into a latent space, and a decoding function, which recon-
structs the input data from the latent space. In the non-linear case,
neural networks are often used as the encoding and decoding func-
tions. As a regularized autoencoder, Vincent et al. [1,15,16] have
proposed the denoising autoencoder, in which the input data are
corrupted by Gaussian noise, whereas the target data used in learn-
ing are the original (clean) input data. Noisy inputs are used in a
learning neural network to enhance generalization performance
(An [17]).

For uniforming the dimensionality of input data, we propose a
variant of the denoising autoencoder, in which the input data are
corrupted, and an extended part added to make the dimensional-
ity of input uniform is also injected by Gaussian noise. In the latent
space formed by the encoding function, we obtain a uniformed rep-
resentation with inputs of different dimensionality. Thus, we can
apply the regression or discriminative tasks to the uniformed input
data.

In the experiment, we first compare the proposed method with
the multi-layer autoencoder, the denoising autoencoder, and the
kernel PCA for synthetic data. Next, we evaluate the proposed

method using compounds of four to six elements in ion-conducting
bulk materials and hydrogen storage materials composed of two
to five elements. We  then show that regression can be performed
using the uniformed input data, as well as the robustness with
respect to data size and number of elements. Moreover, in a clus-
tering task using these data and the k-nearest neighbors (k-nn)
method, we find distance preservation, i.e., consistency of class
assignment, in the data space, which also holds for the case using
the denoising autoencoder. We  evaluate the distance preserva-
tion using the difference in class assignments between the latent
data in the latent representation and the original data in the input
space.

The remainder of the present paper is organized as follows. In
Section 2, we  present background information and define the prob-
lem formulation. In Section 3, we describe the learning algorithm
of the proposed method in detail. In Section 4, we  conduct exper-
iments involving a regression task on synthetic data and for the
modeling of ion conductivity and hydrogen storage, and, using the
uniformed input data, compare the distance preservation of the
proposed method and the denoising autoencoder. In Section 5, we
discuss the experimental results, related research, and future stud-
ies. Finally, Section 6 concludes the study.

2. Background and problem formulation

Descriptors (features) in materials sciences are crucial for com-
putational materials design. In the case of the underlying theory
and empirically known mechanism of material properties, the fea-
tures are easily identifiable. However, it is necessary to generate
the features derived from the properties of elements (for example,
electron negativity, atomic number, and atomic mass). With regard
to the representation of features, we refer to the former as an expert
representation and the latter as a naive representation. The advan-
tage of the naive representation is that it is applicable to the case
of material properties with poorly known mechanisms or theoret-
ical models. It is necessary to incorporate the (molecule or crystal)
structural features in the representation if two materials with the
same composition have different properties. In the case of isomers,
the melting temperatures of C4H6 are −125.7 ◦C for 1-butyne and
−32 ◦C for 2-butyne, respectively.

In the naive representation, for example, as the features of
compound AB, which is composed of elements A and B, the cor-
responding vector v is composed from the three properties of
elements A and B as follows:

v = (v11 v12 v21 v22 v31 v32)T = (vij), i = 1, 2, 3, j = 1, 2,

where the index i denotes the property of element, and T denotes
transpose.

Index j corresponds to atom A or B. The length of the vector
is the product of the number of elements in the compound and
the properties of the elements. Therefore, the length of the vec-
tor differs depending on the number of elements in the compound.
Thus, for compounds with different numbers of elements, we  can-
not use the input variables vector as a feature of the compound to
perform regression or discriminative tasks. Moreover, as shown in
the experiments described below, for the data on compounds hav-
ing various numbers of elements, regression cannot be conducted
because of a lack of data. The overall data need to be used for the
task. As such, when using the overall data including all number of
elements, the input variables as the features of the compounds have
to be composed for the task. Therefore, it is necessary for the length
of the vector to be made uniform. Note that the physical meaning
of the vector changes according to the element (atomic) permu-
tations in the vector. Thus, we sort the elements of the vector by
atomic number. For example, if the atomic number A (j = 1) is larger
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