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a b s t r a c t

In this study, for the first time, we show how to formulate a structured support vector machine (SSVM)
as two layers in a convolutional neural network, where the top layer is a loss augmented inference
layer and the bottom layer is the normal convolutional layer. We show that a deformable part model
can be learned with the proposed structured SVM neural network by backpropagating the error of the
deformable part model to the convolutional neural network. The forward propagation calculates the loss
augmented inference and the backpropagation calculates the gradient from the loss augmented inference
layer to the convolutional layer. Thus, we obtain a new type of convolutional neural network called an
Structured SVM convolutional neural network, which we applied to the human pose estimation problem.
This new neural network can be used as the final layers in deep learning. Our method jointly learns the
structural model parameters and the appearance model parameters. We implemented our method as a
new layer in the existing Caffe library.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Generic structural prediction for object parts is similar to the
human pose estimation (HPE) problem, e.g., labeling and bound-
ing car parts with boxes, labeling and bounding face parts with
boxes, and labeling and bounding bus parts with boxes. The pose
estimation problem based on a still two-dimensional (2D) image
is defined as finding the human joints or parts in an image con-
taining one human. This problem is difficult due to variations in
the color of clothes and because some parts are partially or to-
tally occluded. Previous state-of-the-art pose estimation solutions
are based mainly on the success of the pictorial structure pro-
gramming (Felzenszwalb & Huttenlocher, 2005), whichwas devel-
oped by Felzenszwalb (Felzenszwalb & Huttenlocher, 2005). This
method rapidly became the standard approach for object localiza-
tion. Ramanan (2007) adopted this method for HPE and it is now
the standard method for HPE. Ramanan’s method for solving the
HPE involves clustering the subparts, before extracting the his-
togram of oriented gradients (HOG) features for each subpart and
learning support vector machine (SVM) filters for each of the sub-
parts. Pictorial structures are then created and the parts are popu-
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lated, before the subparts are filtered with these SVM filters to re-
learn them structurally. This method has been improved in various
ways, where one way involves finding a better structure, e.g., Tian,
Zitnick, and Narasimhan (2012) proposed a pictorial structure tree
model with added latent variables, Tian and Sclaroff (2010) care-
fully designed leaf node variations and latent nodes, which con-
trol the variations of the leaf nodes, while Pishchulin, Andriluka,
Gehler, and Schiele (2013) added a loopymodel for inference. Dan-
tone, Gall, Leistner, and Van Gool (2014) focused on clustering
parts into multimodal decomposable models. Cherian, Mairal, Ala-
hari, and Schmid (2014) tried to improve the pictorial structure
by obtaining a better prior model by parameterizing the geometric
variables. However, if the model is improved, all of these methods
must learn the structural model parameters. Latent SVM (Yang &
Ramanan, 2011) is the standard method for learning these model
parameters.

Currently, deep learning and feature learning are popular
methods for finding features for classification, detection, and
segmentation, including a deep convolutional network for facial
point detection (Sun, Wang, & Tang, 2013), a deep network for
pedestrian detection (Sermanet, Kavukcuoglu, Chintala, & Lecun,
2013), pose estimation with a deep network (Ouyang, Chu, &
Wang, 2014), facial feature tracking with a restricted Boltzmann
machine (Wu, Wang, & Ji, 2013), shape prior detection using deep
learning for object segmentation (Chen, Yu, Hu, & Xunxun, 2013),
and object detection with a deep network (Szegedy, Toshev, &
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Erhan, 2013). The most similar method to that proposed in our
study is that described by Yang, Ouyang, Li, and Wang (2016),
which resulted in a great improvement in the percentage of
correct parts (PCP), where the PCP accuracy was high as 81%. They
formulated the problem as the end-to-end backpropagation of
SVM hinge loss, whereas we formulate the problem as a structured
SVM (SSVM) (Tsochantaridis, Hofmann, Joachims, & Altun, 2004).

Our approach starts from Girshick’s claim that a convolutional
neural network (CNN) (LeCun, Bottou, Bengio, & Haffner, 1998) is a
deformable part model (DPM) (Girshick, Iandola, Darrell, & Malik,
2015). However, they did not backpropagate the error from the
DPM model to the CNN. If a DPM is a CNN, then the error must
be backpropagated to the lower layer. Thus, we backpropagate the
error of the DPM back to the CNN using the SSVM loss function.

To apply latent SVM (Yang & Ramanan, 2011) with deep
learning, the normal method involves extracting features with a
deep neural network and performing latent SVM learning as two
distinct stages using the same pipeline, i.e., feature extraction,
caching the result from the first stage, and then submitting it
to the latent SVM learning algorithm in the second stage. For
example Girshick (Girshick et al., 2015) extracted a pyramid of
features from a CNN in the feature extraction stage, before caching
the extracted features, and then learning with a latent SVM
during the second stage. In the second stage, the latent SVM then
learned all of the model parameters by switching between SVM
optimization and inference combinatorial optimization. However,
this type of method has inherent problems because it cannot learn
the parameters extracted by the deep learning feature from the
inference optimization error because they are conducted in two
distinct stages. The learnable feature extraction parameters cannot
be updated based on the error of the latent SVM. Thus, we propose
SSVM CNN to address this problem.

In future research, we plan to use deep CNN as a feature
extractor because it is known to perform well (Yang et al., 2016).
However, in the present study, we determined the feasibility of
this method by showing that minimizing the loss with the SSVM
CNN can be employed for part-based detection. Theremay be cases
where the losses are minimized well but part-based detection is
not achieved. If this method is feasible, we aim to employ deep
CNN as the front end feature extractor instead of HOG and the
SSVM neural network as the back end for HPE. In this study, we
demonstrated that it is feasible to use our SSVM CNN method as
the back end in the planned system.

2. Our method

HPE is the problem of estimating human joint positions. The
joints are considered to have been estimated correctly if the
predicted error in the difference among pixels is less than a certain
threshold. The HPE problem involves the following challenges:
(1) the size of a human can be small or large depending on how
close the camera is to the human when obtaining an image;
(2) body parts can differ in their appearance, e.g., the appearance
of a hand can be a fist or palm, while a limb can be vertical or
horizontal; (3) humanpictures are taken in three-dimensional (3D)
contexts, but there may be many 2D pose appearances for the
same 3D pose, and there are many possible 3D poses. To address
these challenges, the following methods have been implemented
in previous studies. (1) Multiscale human detection, which is
sometime called an image pyramid or feature pyramid. An image
of a feature x is scaled to all the layer values l ∈ L, where
L = {1, . . . , ln}. (2) Mixture of part types. To address the different
possible appearances of each human part, each human part model
is designed so it comprises multiple different part types. The body
parts obtained from training images are clustered into part types
based on their relative joint positions in the image coordinates

with respect to neighboring joints. The underlying assumption of
this clustering method is that the same group of relative joint
positions will appear similar. (3) Co-occurrence model. This model
consider how two neighboring parts co-occur according to a
system of biases. Each type of mixture of neighboring nodes has
an associated bias. These measures are incorporated into a well-
known pictorial structure model where their edges are quantified
under the assumption that the energy required for placing parts
only varies quadratically based on the relative distance, such as
the energy required for stretching or compressing springs from
their anchor positions with respect to their parent nodes. These
models were developed directly from that proposed by Yang and
Ramanan (2011), where they combined these three models into a
single large model, i.e., the coocurrence model, deformable model,
and appearance model. The first two models are called structural
models in our study.

We propose a new method for learning the models mentioned
above. We propose to jointly learn all the models, all their param-
eters, in the way the neural network learns their parameters by
learning all of them using stochastic subgradient descent. In con-
trast to Yang and Ramanan (2011), who proposed learning the ap-
pearance model prior to structural training, our method can learn
all the parameters by random initialization. We note that the DPM
unary filters method is exactly equal to a convolutional operation
during DPM inference. During DPM inference, each unary filter de-
termines the ‘‘sliding dot product’’ between feature matrices and
weight matrices. This operation is exactly equal to the weights
of the convolutional layer in the CNN acting on their input ma-
trices. Thus, we design the DPM unary filters, which vary accord-
ing to the human parts and human part types, as the convolution
layer in the CNN. This DPM filters defines the appearance model’s
weights because they give the feature similarity scores. We de-
sign the cooccurrence model’s weights as parameters on the loss
augmented inference layer. We design the DPM pairwise weights,
deformable weights, or simply the spring term’s weights as other
types of parameters on the loss augmented inference layer. These
designs are shown in Fig. 1. In this section, we show how an SSVM
based on DPM can be implemented as a two-layer neural network,
where the first layer is the convolutional layer (Convssvm layer in
Fig. 1) and the other is the loss augmented inference layer (loss aug-
mented inference layer in Fig. 1). By transforming the structured
formof themodel into a neural network in themodel, our proposed
method can jointly learn the structural model and appearance
model, and then backpropagate the error to learn the underlying
learnable parameters that can be extracted from the appearance
model features (CNN layer in Fig. 1). Thus, our proposed method
translates the SSVM model into a neural network model, and thus
it inherits the neural network’s innate ability to backpropagate the
error to a lower layer, as well as calculating the exact SSVM loss
and learning the original SSVM with a subgradient-based method.

2.1. DPM problem formulation

Our approach starts by formulating the DPM as an instance of
SSVM learning. As shown by Ratliff, Bagnell, and Zinkevich (2007),
the SSVM can be learned by subgradient descent. Thus, we start by
formulating the detection problem.

Let xi represent a matrix of RGB values for the ith training data
and yi represents the ith training bounding boxes label, where
(top left column, top left row, bottom right column, bottom right
row) are denoted by [x1, y1, x2, y2]. Each row of yi represents each
bounding box for each part in a similar manner to the method
proposed by Yang and Ramanan (2011). Therefore, yi is a matrix
of numparts × 4. The bold characters indicate that they are either
vectors or matrices. First, we scale xi to multiple scales. To define
this scaling, let L = {1, . . . , ln} denote the set of all scaling levels.
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