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a  b  s  t  r  a  c  t

An  essential  component  of any  workflow  leveraging  digital  data  consists  in the  identification  and  extrac-
tion  of  relevant  patterns  from  a  data  stream.  We  consider  a scenario  in  which  an  extraction  inference
engine  generates  an  entity extractor  automatically  from  examples  of the  desired  behavior,  which  take  the
form of user-provided  annotations  of the  entities  to be extracted  from  a  dataset.  We  propose  a method-
ology  for  predicting  the  accuracy  of  the  extractor  that  may  be  inferred  from  the available  examples.  We
propose  several  prediction  techniques  and  analyze  experimentally  our proposals  in  great  depth,  with
reference  to  extractors  consisting  of  regular  expressions.  The  results  suggest  that  reliable  predictions  for
tasks of  practical  complexity  may indeed  be obtained  quickly  and  without  actually  generating  the entity
extractor.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

An essential component of any workflow leveraging digital data
consists in the identification and extraction of relevant patterns
from a data stream. This task occurs routinely in virtually every sec-
tor of business, government, science, technology, and so on. In this
work we are concerned with extraction from an unstructured text
stream of entities that adhere to a syntactic pattern. We  consider a
scenario in which an extractor is obtained by tailoring a generic tool
to a specific problem instance. The extractor may  consist, e.g., of a
regular expression, or of an expression in a more general formalism
[1], or of full programs suitable to be executed by NLP tools [2,3]. The
problem instance is characterized by a dataset from which a spec-
ified entity type is to be extracted, e.g., VAT numbers, IP addresses,
or more complex entities.

The difficulty of generating an extractor is clearly dependent on
the specific problem. However, we are not aware of any method-
ology for providing a practically useful answer to questions of this
sort: generating an extractor for describing IP addresses is more or
less difficult than generating one for extracting email addresses?
Is it possible to generate an extractor for drug dosages in med-
ical recipes, or for ingredients in cake recipes, with a specified
accuracy level? Does the difficulty of generating an extractor for a
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specified entity type depend on the properties of the text that is not
to be extracted? Not only answering such questions may  provide
crucial insights on extractor generation techniques, it may  also be
of practical interest to end users. For example, a prediction of low
effectiveness could be exploited by providing more examples of the
desired extraction behavior; the user might even decide to adopt
a manual approach, perhaps in crowdsourcing, for problems that
appear to be beyond the scope of the extractor generation tech-
nique being used.

In this work we propose an approach for addressing questions
of this sort systematically. We  consider on a scenario of increasing
interest in which the problem instance is specified by examples of
the desired behavior and the target extractor is generated based on
those examples automatically [4–12]. We  propose a methodology
for predicting the accuracy of the extractor that may be inferred by a
given extraction inference engine from the available examples. Our
prediction methodology does not depend on the inference engine
internals and can in principle be applied to any inference engine:
indeed, we validate it on two  different engines which infer different
forms of extractors.

The basic idea is to use string similarity metrics to characterize
the examples. In this respect, an “easy” problem instance is one
in which (i) strings to be extracted are “similar” to each other,
(ii) strings not to be extracted are “similar” to each other, and
(iii) strings to be extracted are not “similar” to strings not to be
extracted. Despite its apparent simplicity, implementing this idea
is highly challenging for several reasons.

To be practically useful, a prediction methodology shall satisfy
these requirements: (a) the prediction must be reliable; (b) it must
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be computed without actually generating the extractor; (c) it must
be computed very quickly w.r.t. the time taken for inferring the
extractor. First and foremost, predicting the performance of a solu-
tion without actually generating the solution is clearly very difficult
(see also the related work section).

Second, it is not clear to which degree a string similarity met-
ric can capture the actual difficulty in inferring an extractor for a
given problem instance. Consider, for instance, the Levenshtein dis-
tance (string edit distance) applied to a problem instance in which
entities to be extracted are dates. Two dates (e.g., 2-3-1979 and 7-
2-2011, whose edit distance is 6) could be as distant as a date and
a snippet not to be extracted (e.g, 2-3-1979 and 19.79$, whose
edit distance is 6 too); yet dates could be extracted by an extrac-
tor in the form of regular expression that is very compact, does not
extract any of the other snippets and could be very easy to generate
(\d+-\d+-\d+). However, many string similarity metrics exist and
their effectiveness is tightly dependent on the specific application
[13,14]. Indeed, one of the contributions of our proposal is precisely
to investigate which metric is the most suitable for assessing the
difficulty of extractor inference.

Third, the number of snippets in an input text grows quadrati-
cally with the text size and becomes huge very quickly—e.g., a text
composed of just 105 characters includes ≈1010 snippets. It follows
that computing forms of similarity between all pairs of snippets
may  be feasible for snippets that are to be extracted but is not
practically feasible for snippets that are not to be extracted.

We propose several prediction techniques and analyze experi-
mentally our proposals in great depth, with reference to a number
of different similarity metrics and of challenging problem instances.
We validate our techniques with respect to a state-of-the-art
extractor generator1 approach that we have recently proposed
[9,5,6]; we further validate our predictor on a worse-performing
alternative extractor generator [15] which works internally in a
different way. The results are highly encouraging suggesting that
reliable predictions for tasks of practical complexity may  indeed be
obtained quickly.

2. Related work

Although we are not aware of any work specifically devoted
to predicting the effectiveness of a pattern-based entity extractor
inference method, there are several research fields that addressed
similar issues. The underlying common motivation is twofold:
inferring a solution to a given problem instance may  be a lengthy
procedure; and, the inference procedure is based on heuristics
that cannot provide any optimality guarantees. Consequently,
lightweight methods for estimating the quality of a solution before
actually generating that solution are highly desirable.

In combinatorial optimization a wealth of research efforts have
been devoted to the problem of estimating the difficulty of a given
problem instance [16]. Such efforts may  be broadly categorized
in two classes: identifying features of a problem instance which
may  impact difficulty in terms of quality of a solution; and, iden-
tifying problem instance-independent features that may  help in
characterizing the difficulty of a task in general.

The work in [17] considers a specific class of combinatorial opti-
mization tasks (TSP: traveling salesman problem) and follows a
different line of research aimed at identifying features of a prob-
lem instance that may  be helpful in choosing from a portfolio of
algorithms the best one for that instance. The cited work actu-
ally considers only two  such algorithms and assesses the ability of

1 A web based version is available on http://regex.inginf.units.it/; the source code
is  published on https://github.com/MaLeLabTs/RegexGenerator.

several classifiers, trained on a number of problem instances, to
predict the relative performance of these two  algorithms.

A recent proposal in this area followed a common approach con-
sisting in the generation of a number of problem instances for a
specific problem class (TSP) by means of a parametrized genera-
tion method [18]. A regressor for the solutions was  then generated
by using features of each problem instance that included values
for the generation parameter. Our approach is similar except that
we address a radically different task, thereby calling for radically
different features.

An indirect but strong indication that the problem that we  are
addressing is amenable only to heuristic solutions without any for-
mal  guarantee is provided in [19], which considers optimization
problems and proves that predictive measures that run in polyno-
mial time do not exist.

Problem difficulty prediction is a very important research topic
in evolutionary computation: an excellent survey can be found in
[20]. The cited work presents a general method for estimating per-
formance of evolutionary program induction algorithms with an
experimental evaluation on two  important classes of tasks, i.e.,
symbolic regression and Boolean function induction. The method
is based on regressors trained on features extracted from problem
instances. Features are defined over forms of distances computed
over input–output pairs of the problem instance. We  are not aware
of any instantiation of this method for application domains involv-
ing string similarity computations, where there are many metrics
that can be used and their effectiveness is tightly dependent on the
specific task (e.g., [21,22]).

A systematic analysis of a number of measures aimed at charac-
terizing the difficulty of a classification problem is presented in [23].
In principle, this analysis could be applied also to text extraction
problems, because such problems require classifying each individ-
ual character in a stream depending on whether the character is
to be extracted. On the other hand, the cited work focuses on the
geometrical properties of classification, considering measures that
may  highlight the separation between classes in the measurement
space. Text extraction problems are generally not suitable to inter-
pretations of this kind.

Performance prediction is an important research topic in infor-
mation retrieval, aimed at assessing effectiveness of a query before
or during early stages of retrieval [24–27]. Methods in this area
generally require an indexing phase of the document corpus and
then emit a prediction for a query based on a quick compari-
son between query terms and various indexed structures [28] (a
corpus-independent approach is proposed in [29]).

As mentioned above, the effectiveness of a given string similarity
metrics is usually highly dependent on the specific class of task. For
this reason, we apply our proposal on a number of different metrics
following an approach taken in other application domains. Several
preprocessing strategies in combination with a variety of similar-
ity metrics were assessed with reference to ontology alignment task
[13]. The focus was finding the combination which exhibits best
performance on a wide selection of problem instances representa-
tive of the ontology alignment task. A number of similarity metrics
proposed by various research communities were applied to the task
of matching entity names to database records [14]. The focus was
finding the metric most suitable to the specific task. The key dif-
ference from our approach is that we investigate different string
metrics as a tool for predicting the quality of a solution. The solu-
tion itself, i.e., the extractor tailored to a specific task instance,
is built with a method which does not use string metrics in any
way.

The availability of an estimate of costly data elaborations may
be desirable also when dealing with data quality. For instance,
the authors of [30] propose a method for estimating the num-
ber of duplicates in a dataset, before actually applying more
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