
Applied Soft Computing 46 (2016) 398–406

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

Predicting the effectiveness of pattern-based entity extractor
inference

Alberto Bartoli, Andrea De Lorenzo, Eric Medvet ∗, Fabiano Tarlao
DIA, University of Trieste, Italy

a r t i c l e i n f o

Article history:
Received 15 October 2015
Received in revised form 24 March 2016
Accepted 14 May 2016
Available online 20 May 2016

Keywords:
String similarity metrics
Information extraction
Genetic programming
Hardness estimation

a b s t r a c t

An essential component of any workflow leveraging digital data consists in the identification and extrac-
tion of relevant patterns from a data stream. We consider a scenario in which an extraction inference
engine generates an entity extractor automatically from examples of the desired behavior, which take the
form of user-provided annotations of the entities to be extracted from a dataset. We propose a method-
ology for predicting the accuracy of the extractor that may be inferred from the available examples. We
propose several prediction techniques and analyze experimentally our proposals in great depth, with
reference to extractors consisting of regular expressions. The results suggest that reliable predictions for
tasks of practical complexity may indeed be obtained quickly and without actually generating the entity
extractor.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

An essential component of any workflow leveraging digital data
consists in the identification and extraction of relevant patterns
from a data stream. This task occurs routinely in virtually every sec-
tor of business, government, science, technology, and so on. In this
work we are concerned with extraction from an unstructured text
stream of entities that adhere to a syntactic pattern. We consider a
scenario in which an extractor is obtained by tailoring a generic tool
to a specific problem instance. The extractor may consist, e.g., of a
regular expression, or of an expression in a more general formalism
[1], or of full programs suitable to be executed by NLP tools [2,3]. The
problem instance is characterized by a dataset from which a spec-
ified entity type is to be extracted, e.g., VAT numbers, IP addresses,
or more complex entities.

The difficulty of generating an extractor is clearly dependent on
the specific problem. However, we are not aware of any method-
ology for providing a practically useful answer to questions of this
sort: generating an extractor for describing IP addresses is more or
less difficult than generating one for extracting email addresses?
Is it possible to generate an extractor for drug dosages in med-
ical recipes, or for ingredients in cake recipes, with a specified
accuracy level? Does the difficulty of generating an extractor for a

∗ Corresponding author.
E-mail addresses: bartoli.alberto@units.it (A. Bartoli), andrea.delorenzo@units.it

(A. De Lorenzo), emedvet@units.it (E. Medvet), fabiano.tarlao@phd.units.it
(F. Tarlao).

specified entity type depend on the properties of the text that is not
to be extracted? Not only answering such questions may provide
crucial insights on extractor generation techniques, it may also be
of practical interest to end users. For example, a prediction of low
effectiveness could be exploited by providing more examples of the
desired extraction behavior; the user might even decide to adopt
a manual approach, perhaps in crowdsourcing, for problems that
appear to be beyond the scope of the extractor generation tech-
nique being used.

In this work we propose an approach for addressing questions
of this sort systematically. We consider on a scenario of increasing
interest in which the problem instance is specified by examples of
the desired behavior and the target extractor is generated based on
those examples automatically [4–12]. We propose a methodology
for predicting the accuracy of the extractor that may be inferred by a
given extraction inference engine from the available examples. Our
prediction methodology does not depend on the inference engine
internals and can in principle be applied to any inference engine:
indeed, we validate it on two different engines which infer different
forms of extractors.

The basic idea is to use string similarity metrics to characterize
the examples. In this respect, an “easy” problem instance is one
in which (i) strings to be extracted are “similar” to each other,
(ii) strings not to be extracted are “similar” to each other, and
(iii) strings to be extracted are not “similar” to strings not to be
extracted. Despite its apparent simplicity, implementing this idea
is highly challenging for several reasons.

To be practically useful, a prediction methodology shall satisfy
these requirements: (a) the prediction must be reliable; (b) it must

http://dx.doi.org/10.1016/j.asoc.2016.05.023
1568-4946/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2016.05.023
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2016.05.023&domain=pdf
mailto:bartoli.alberto@units.it
mailto:andrea.delorenzo@units.it
mailto:emedvet@units.it
mailto:fabiano.tarlao@phd.units.it
dx.doi.org/10.1016/j.asoc.2016.05.023

A. Bartoli et al. / Applied Soft Computing 46 (2016) 398–406 399

be computed without actually generating the extractor; (c) it must
be computed very quickly w.r.t. the time taken for inferring the
extractor. First and foremost, predicting the performance of a solu-
tion without actually generating the solution is clearly very difficult
(see also the related work section).

Second, it is not clear to which degree a string similarity met-
ric can capture the actual difficulty in inferring an extractor for a
given problem instance. Consider, for instance, the Levenshtein dis-
tance (string edit distance) applied to a problem instance in which
entities to be extracted are dates. Two dates (e.g., 2-3-1979 and 7-
2-2011, whose edit distance is 6) could be as distant as a date and
a snippet not to be extracted (e.g, 2-3-1979 and 19.79$, whose
edit distance is 6 too); yet dates could be extracted by an extrac-
tor in the form of regular expression that is very compact, does not
extract any of the other snippets and could be very easy to generate
(\d+-\d+-\d+). However, many string similarity metrics exist and
their effectiveness is tightly dependent on the specific application
[13,14]. Indeed, one of the contributions of our proposal is precisely
to investigate which metric is the most suitable for assessing the
difficulty of extractor inference.

Third, the number of snippets in an input text grows quadrati-
cally with the text size and becomes huge very quickly—e.g., a text
composed of just 105 characters includes ≈1010 snippets. It follows
that computing forms of similarity between all pairs of snippets
may be feasible for snippets that are to be extracted but is not
practically feasible for snippets that are not to be extracted.

We propose several prediction techniques and analyze experi-
mentally our proposals in great depth, with reference to a number
of different similarity metrics and of challenging problem instances.
We validate our techniques with respect to a state-of-the-art
extractor generator1 approach that we have recently proposed
[9,5,6]; we further validate our predictor on a worse-performing
alternative extractor generator [15] which works internally in a
different way. The results are highly encouraging suggesting that
reliable predictions for tasks of practical complexity may indeed be
obtained quickly.

2. Related work

Although we are not aware of any work specifically devoted
to predicting the effectiveness of a pattern-based entity extractor
inference method, there are several research fields that addressed
similar issues. The underlying common motivation is twofold:
inferring a solution to a given problem instance may be a lengthy
procedure; and, the inference procedure is based on heuristics
that cannot provide any optimality guarantees. Consequently,
lightweight methods for estimating the quality of a solution before
actually generating that solution are highly desirable.

In combinatorial optimization a wealth of research efforts have
been devoted to the problem of estimating the difficulty of a given
problem instance [16]. Such efforts may be broadly categorized
in two classes: identifying features of a problem instance which
may impact difficulty in terms of quality of a solution; and, iden-
tifying problem instance-independent features that may help in
characterizing the difficulty of a task in general.

The work in [17] considers a specific class of combinatorial opti-
mization tasks (TSP: traveling salesman problem) and follows a
different line of research aimed at identifying features of a prob-
lem instance that may be helpful in choosing from a portfolio of
algorithms the best one for that instance. The cited work actu-
ally considers only two such algorithms and assesses the ability of

1 A web based version is available on http://regex.inginf.units.it/; the source code
is published on https://github.com/MaLeLabTs/RegexGenerator.

several classifiers, trained on a number of problem instances, to
predict the relative performance of these two algorithms.

A recent proposal in this area followed a common approach con-
sisting in the generation of a number of problem instances for a
specific problem class (TSP) by means of a parametrized genera-
tion method [18]. A regressor for the solutions was then generated
by using features of each problem instance that included values
for the generation parameter. Our approach is similar except that
we address a radically different task, thereby calling for radically
different features.

An indirect but strong indication that the problem that we are
addressing is amenable only to heuristic solutions without any for-
mal guarantee is provided in [19], which considers optimization
problems and proves that predictive measures that run in polyno-
mial time do not exist.

Problem difficulty prediction is a very important research topic
in evolutionary computation: an excellent survey can be found in
[20]. The cited work presents a general method for estimating per-
formance of evolutionary program induction algorithms with an
experimental evaluation on two important classes of tasks, i.e.,
symbolic regression and Boolean function induction. The method
is based on regressors trained on features extracted from problem
instances. Features are defined over forms of distances computed
over input–output pairs of the problem instance. We are not aware
of any instantiation of this method for application domains involv-
ing string similarity computations, where there are many metrics
that can be used and their effectiveness is tightly dependent on the
specific task (e.g., [21,22]).

A systematic analysis of a number of measures aimed at charac-
terizing the difficulty of a classification problem is presented in [23].
In principle, this analysis could be applied also to text extraction
problems, because such problems require classifying each individ-
ual character in a stream depending on whether the character is
to be extracted. On the other hand, the cited work focuses on the
geometrical properties of classification, considering measures that
may highlight the separation between classes in the measurement
space. Text extraction problems are generally not suitable to inter-
pretations of this kind.

Performance prediction is an important research topic in infor-
mation retrieval, aimed at assessing effectiveness of a query before
or during early stages of retrieval [24–27]. Methods in this area
generally require an indexing phase of the document corpus and
then emit a prediction for a query based on a quick compari-
son between query terms and various indexed structures [28] (a
corpus-independent approach is proposed in [29]).

As mentioned above, the effectiveness of a given string similarity
metrics is usually highly dependent on the specific class of task. For
this reason, we apply our proposal on a number of different metrics
following an approach taken in other application domains. Several
preprocessing strategies in combination with a variety of similar-
ity metrics were assessed with reference to ontology alignment task
[13]. The focus was finding the combination which exhibits best
performance on a wide selection of problem instances representa-
tive of the ontology alignment task. A number of similarity metrics
proposed by various research communities were applied to the task
of matching entity names to database records [14]. The focus was
finding the metric most suitable to the specific task. The key dif-
ference from our approach is that we investigate different string
metrics as a tool for predicting the quality of a solution. The solu-
tion itself, i.e., the extractor tailored to a specific task instance,
is built with a method which does not use string metrics in any
way.

The availability of an estimate of costly data elaborations may
be desirable also when dealing with data quality. For instance,
the authors of [30] propose a method for estimating the num-
ber of duplicates in a dataset, before actually applying more

http://regex.inginf.units.it/
http://regex.inginf.units.it/
http://regex.inginf.units.it/
http://regex.inginf.units.it/
http://regex.inginf.units.it/
http://regex.inginf.units.it/
https://github.com/MaLeLabTs/RegexGenerator
https://github.com/MaLeLabTs/RegexGenerator
https://github.com/MaLeLabTs/RegexGenerator
https://github.com/MaLeLabTs/RegexGenerator
https://github.com/MaLeLabTs/RegexGenerator

Download English Version:

https://daneshyari.com/en/article/494679

Download Persian Version:

https://daneshyari.com/article/494679

Daneshyari.com

https://daneshyari.com/en/article/494679
https://daneshyari.com/article/494679
https://daneshyari.com

