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a b s t r a c t 

In this paper, we propose a distributed algorithm, called Directed-Distributed Subgradient Descent 

(D-DSD), to solve multi-agent optimization problems over directed graphs. Existing algorithms mostly deal 

with similar problems under the assumption of undirected networks, i.e., requiring the weight matrices 

to be doubly-stochastic. The row-stochasticity of the weight matrix guarantees that all agents reach con- 

sensus, while the column-stochasticity ensures that each agent’s local (sub)gradient contributes equally to 

the global objective. In a directed graph, however, it may not be possible to construct a doubly-stochastic 

weight matrix in a distributed manner. We overcome this difficulty by augmenting an additional vari- 

able for each agent to record the change in the state evolution. In each iteration, the algorithm simul- 

taneously constructs a row-stochastic matrix and a column-stochastic matrix instead of only a doubly- 

stochastic matrix. The convergence of the new weight matrix, depending on the row-stochastic and 

column-stochastic matrices, ensures agents to reach both consensus and optimality. The analysis shows 

that the proposed algorithm converges at a rate of O ( ln k √ 
k 
) , where k is the number of iterations. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Distributed computation and optimization has received sig- 

nificant recent interest in many areas, e.g., distributed machine 

learning, [2] , distributed estimation, [33] , cognitive networks, [13] , 

source localization, [23] , distributed coordination, [30] , and mes- 

sage routing, [19] . The related problems can be posed as the 

minimization of a sum of objectives, 
∑ n 

i =1 f i (x ) , where f i : R 

p → R 

is a private objective function at the i th agent. There are two 

general types of distributed algorithms to solve this problem. 

The first type is a (sub)gradient based method [4,6,9,12,17,18,24] , 

where at each iteration a (sub)gradient related step is calcu- 

lated, followed by averaging with neighbors in the network. The 

main advantage of these methods is computational simplicity. 

The (sub)gradient based methods are generalized to mirror de- 

scent methods [10,11,34] by using the Bregman divergence as 

distance-measuring function rather than the Euclidean distance. 

The second type of distributed algorithms are based on aug- 

mented Lagrangians, where at each iteration the primal variables 

are solved to minimize a Lagrangian related function, followed 

by updating the dual variables accordingly, e.g., the Distributed 
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Alternating Direction Method of Multipliers (D-ADMM), [14,26,31] . 

The latter type is preferred when agents can solve the local 

optimization problem efficiently. Most proposed distributed algo- 

rithms, [4,6,9,11,12,14,17,18,24,26,31,34] , assume undirected graphs. 

The primary reason behind assuming the undirected graphs is to 

obtain a doubly-stochastic weight matrix. The row-stochasticity 

of the weight matrix guarantees that all agents reach consensus, 

while the column-stochasticity ensures optimality. 

In this paper, we propose a (sub)gradient based method solving 

distributed optimization problem over the directed graph, which 

we refer to as the Directed-Distributed Subgradient Descent 

(D-DSD). Clearly, a directed topology has broader applications in 

contrast to undirected graphs and may further result in reduced 

communication cost and simplified topology design. We start 

by explaining the necessity of weight matrices being doubly- 

stochastic in existing (sub)gradient based method, e.g., DSD. In the 

iteration of DSD, agents will not reach consensus if the row sum 

of the weight matrix is not equal to one. On the other hand, if 

the column of the weight matrix does not sum to one, each agent 

will contribute differently to the network. Since doubly-stochastic 

matrices may not be achievable in a directed graph, the original 

methods, e.g., DSD, no longer work. We overcome this difficulty 

in a directed graph by augmenting an additional variable for each 

agent to record the state updates. In each iteration of the D-DSD 

algorithm, we simultaneously construct a row-stochastic matrix 

and a column-stochastic matrix instead of only a doubly-stochastic 
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matrix. We give an intuitive explanation of our proposed algorithm 

and further provide convergence and convergence rate analysis as 

well. 

In the context of directed graphs, related work has considered 

(sub)gradient based algorithms, [15,16,27–29] , by combining sub- 

gradient descent and push-sum consensus. The push-sum algo- 

rithm, [1,7] , is first proposed in consensus problems 1 to achieve 

average-consensus given a column-stochastic matrix. The idea is 

based on computing the stationary distribution (the left eigenvec- 

tor of the weight matrix corresponding to eigenvalue 1) for the 

Markov chain characterized by the multi-agent network and can- 

celing the imbalance by dividing with the left-eigenvector. The al- 

gorithms in [15,16,27–29] follow a similar spirit of push-sum con- 

sensus and propose nonlinear (because of division) methods. In 

contrast, our algorithm follows linear iterations and does not in- 

volve any division while providing the same convergence rate as 

the nonlinear one in e.g., [16] . Finally, the analysis and proofs in 

our work are completely different than the nonlinear counterparts 

described here. 

The remainder of the paper is organized as follows. In Section 2 , 

we provide the problem formulation and show the reason why 

DSD fails to converge to the optimal solution over directed graphs. 

We subsequently present the D-DSD algorithm and the necessary 

assumptions. The convergence analysis of the D-DSD algorithm is 

studied in Section 3 , consisting of agents’ consensus analysis and 

optimality analysis. The convergence rate analysis and numerical 

experiments are presented in Sections 4 and 5 . Section 6 contains 

concluding remarks. 

Notation: Lowercase bold letters denote vectors and uppercase 

italic letters denote matrices. We denote by [ x ] i the i th component 

of a vector x , and by [ A ] ij the ( i, j )th element of a matrix, A . An 

n -dimensional vector of all ones or zeros is represented by 1 n or 

0 n . The notation 0 n × n represents an n × n matrix with all ele- 

ments equal to zero. The inner product of two vectors x and y is 

〈 x, y 〉 . We use ‖ x ‖ to denote the standard Euclidean norm. 

2. Problem formulation 

Consider a strongly-connected network of n agents commu- 

nicating over a directed graph, G = (V, E ) , where V is the set 

of agents, and E is the collection of ordered pairs, (i, j) , i, j ∈ V, 

such that agent j can send information to agent i . Define N 

in 

i 
to 

be the collection of in-neighbors, i.e., the set of agents that can 

send information to agent i . Similarly, N 

out 
i 

is defined as the out- 

neighborhood of agent i , i.e., the set of agents that can receive in- 

formation from agent i . We allow both N 

in 

i 
and N 

out 
i 

to include 

the node i itself. Note that in a directed graph N 

in 

i 
	 = N 

out 
i 

, in gen- 

eral. We focus on solving a convex optimization problem that is 

distributed over the above network. In particular, the network of 

agents cooperatively solve the following optimization problem: 

P1 : min f (x ) = 

n ∑ 

i =1 

f i (x ) , 

where each f i : R 

p → R is convex, not necessarily differentiable, 

representing the local objective function at agent i . 

Assumption 1. In order to solve the above problem, we make the 

following assumptions: 

(a) The agent graph, G, is strongly-connected. 

(b) Each local function, f i : R 

p → R , is convex, ∀ i ∈ V . 

1 See, [5,20–22,25,32] , for additional information on average-consensus problems. 

(c) The solution set of Problem P1 and the corresponding opti- 

mal value exist. Formally, we have 

x 

∗ ∈ X 

∗ = 

{ 

x | f (x ) = min 

y ∈ R p 
f (y ) 

} 

, f ∗ = min f (x ) . 

(d) The (sub)gradient, ∇f i ( x ), is bounded: 

‖∇ f i (x ) ‖ ≤ D, 

for all x ∈ R 

p , i ∈ V . 

The Assumptions 1 are standard in distributed optimization, see 

related literature, [18] , and references therein. Before describing 

our algorithm, we first recap the DSD algorithm, [17] , to solve P1 

in an undirected graph. This algorithm requires doubly-stochastic 

weight matrices. We analyze the influence to the result of the DSD 

when the weight matrices are not doubly-stochastic. 

2.1. Distributed subgradient descent 

Consider Distributed Subgradient Descent (DSD), [17] , to solve 

P1. Agent i updates its estimate as follows: 

x 

k +1 
i 

= 

n ∑ 

j=1 

w i j x 

k 
j − αk ∇ f k i , (1) 

where w ij is a non-negative weight such that W = { w i j } is doubly- 

stochastic. The scalar, αk , is a diminishing but non-negative step- 

size, satisfying the persistence conditions, [8,12] : 
∑ ∞ 

k =0 αk = ∞ , ∑ ∞ 

k =0 α
2 
k 

< ∞ , and the vector ∇ f k 
i 

is a (sub)gradient of f i at x k 
i 
. 

For the sake of argument, consider W to be row-stochastic but 

not column-stochastic. Clearly, 1 is a right eigenvector of W , and 

let π = { πi } be its left eigenvector corresponding to eigenvalue 1. 

Summing over i in Eq. (1) , we get 

̂ x 

k +1 � 

n ∑ 

i =1 

πi x 

k +1 
i 

, 

= 

n ∑ 

j=1 

( 

n ∑ 

i =1 

πi w i j 

) 

x 

k 
j − αk 

n ∑ 

i =1 

πi ∇ f i (x 

k 
i ) , 

= ̂

 x 

k − αk 

n ∑ 

i =1 

πi ∇ f k i , (2) 

where π j = 

∑ n 
i =1 πi w i j , ∀ i, j. If we assume that the agents reach an 

agreement, then Eq. (2) can be viewed as an inexact (central) sub- 

gradient descent (with 

∑ n 
i =1 πi ∇ f i (x k 

i 
) instead of 

∑ n 
i =1 πi ∇ f i ( ̂  x k ) ) 

minimizing a new objective, ̂ f (x ) � 

∑ n 
i =1 πi f i (x ) . As a result, the 

agents reach consensus and converge to the minimizer of ̂ f (x ) . 

Now consider the weight matrix, W , to be column-stochastic 

but not row-stochastic. Let x 
k 

be the average of agents estimates 

at time k , then Eq. (1) leads to 

x 

k +1 � 

1 

n 

n ∑ 

i =1 

x 

k +1 
i 

, 

= 

1 

n 

n ∑ 

j=1 

( 

n ∑ 

i =1 

w i j 

) 

x 

k 
j −

αk 

n 

n ∑ 

i =1 

∇ f i (x 

k 
i ) , 

= x 

k −
(
αk 

n 

) n ∑ 

i =1 

∇ f k i . (3) 

Eq. (3) reveals that the average, x 
k 
, of agents estimates follows 

an inexact (central) subgradient descent ( 
∑ n 

i =1 ∇ f i (x k 
i 
) instead of ∑ n 

i =1 ∇ f i ( x 
k ) ) with stepsize αk / n , thus reaching the minimizer of 

f ( x ). Despite the fact that the average, x 
k 
, reaches the optima, x ∗, 

of f ( x ), the optima is not achievable for each agent because con- 

sensus can not be reached with a matrix that is not necessary row- 

stochastic. 
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