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a b s t r a c t 

A very important and timely area of research in finance is systemic risk modelling, which concerns the 

estimation of the relationships between different financial institutions, with the aim of establishing which 

of them are more contagious/subject to contagion. The aim of this paper is to develop a systemic risk 

model which, differently from existing ones, employs not only the information contained in financial 

market prices, but also big data coming from financial tweets. From a methodological viewpoint, we 

propose a new framework, based on graphical Gaussian models, that can estimate systemic risks with 

stochastic network models based on two different sources: financial markets and financial tweets, and 

suggest a way to combine them, using a Bayesian approach. From an applied viewpoint, we present the 

first systemic risk model based on big data, and show that such a model can help predicting the default 

probability of a bank, conditionally on the others. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Systemic risk models address the issue of interdependence be- 

tween financial institutions and, specifically, measure how bank 

default risks are transmitted among banks. 

The study of bank defaults is important for two reasons. First, 

an understanding of the factors related to bank failure enables reg- 

ulatory authorities to supervise banks more efficiently. If supervi- 

sors can detect problems early enough, regulatory actions can be 

taken, to prevent a bank from failing and, therefore, to reduce the 

costs of its bail-in, faced by shareholders, bondholders and deposi- 

tors; or those of its bail-out, faced by governments and, ultimately, 

by the taxpayers. Second, the failure of a bank very likely induces 

failures of other banks or of parts of the financial system. Under- 

standing the determinants of a single bank failure may thus help 

to understand the determinants of financial systemic risks, were 

they due to microeconomic idiosyncratic factors or to macroeco- 

nomic imbalances. When problems are detected, their causes can 

be removed or isolated, to limit “contagion effects”. 

Most research papers on bank failures are based on financial 

market models, that originate from the seminal paper of Merton 

[21] , in which the market value of bank assets is matched against 

bank liabilities. Due to its practical limitations, Merton’s model has 

been evolved into a reduced form (see e.g. Vasicek, [25] ), leading 
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to a widespread diffusion of the resulting approach, and the related 

implementation in regulatory models. 

The last few years have witnessed an increasing research liter- 

ature on systemic risk, with the aim of identifying the most con- 

tagious institutions and their transmission channels. Specific mea- 

sures of systemic risk have been proposed for the banking sector; 

in particular, by Acharya et al. [1] , Adrian and Brunnermeier (2011), 

Brownlees and Engle (2012), Acharya et al. (2012), Dumitrescu and 

Banulescu (2014) and Hautsch et al. (2015). On the basis of market 

prices, these authors calculate the quantiles of the estimated loss 

probability distribution of a bank, conditional on the occurrence of 

an extreme event in the financial market. 

The above approach is useful to establish policy thresholds 

aimed, in particular, at identifying the most systemic institutions. 

However, it is a bivariate approach, which allows to calculate the 

risk of an institution conditional on another (or on a reference 

market), but it does not address the issue of how risks are trans- 

mitted between different institutions in a multivariate framework. 

Trying to address the multivariate nature of systemic risk, re- 

searchers have proposed a network modelling approach, following 

the idea in Diamond and Dybvig [12] and the seminal papers of 

Sheldon and Maurer [23] , Eisenberg and Noe [13] , Boss et al. [5] , 

Upper and Worms [24] . In this literature, interconnectedness is re- 

lated to the detection of the most central players in a network that 

describes financial flows between agents. While the simplest way 

of measuring the centrality of a node in the network is by counting 

the number of neighbours that it has, more sophisticate measures 

of centrality have been applied, including that shown in Battis- 

ton et al. (2012) who develop a network algorithm -the DebtRank- 

starting from Google’s PageRank algorithm. 
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A different type of network models, recently proposed, are 

based on correlations (or distances) between financial descriptors 

of agents, such as their stock market prices, bond interest rate 

spreads or corporate default spreads. The first contributions in 

this framework are Mantegna [20] , Onnela et al. [22] , Tumminello 

et al. (2004) and, recently, Billio et al. [2] and Diebold and Yilmaz 

(2014), who propose measures of connectedness based on Granger- 

causality tests and variance decompositions. Barigozzi and Brown- 

lees (2013), Ahelegbey et al. (2015) and Giudici and Spelta (2016) 

have extended the approach introducing stochastic graphical mod- 

els. 

Here we shall follow this latter approach, and add a stochas- 

tic framework, based on graphical models. We will thus be able to 

derive, on the basis of market price data on a number of financial 

institutions, the network model that best describes their interrela- 

tionships and, therefore, explains how systemic risk is transmitted 

among them. 

It is well known that market prices are formed in complex 

interaction mechanisms that often reflect speculative behaviours, 

rather than the fundamentals of the companies to which they refer. 

Market models and, specifically, financial network models based 

on market data may, therefore, reflect “spurious” components that 

could bias systemic risk estimation. This weakness of the market 

suggests to enrich financial market data with data coming from 

other, complementary, sources. Indeed, market prices are only one 

of the evaluations that are carried out on financial institutions: 

other relevant ones include ratings issued by rating agencies, re- 

ports of qualified financial analysts, and opinions of influential me- 

dia. 

Most of the previous sources are private, not available for data 

analysis. However, summary reports from them are now typically 

reported, almost in real time, in social networks and, in particu- 

lar, in tweets. In parallel with these developments, seminal papers 

on the statistical analysis of such data have recently appeared: see, 

for example, Bollen et al. [3] , Bordino et al. [4] , Choi and Varian 

[10] , Feldman [14] , Cerchiello and Giudici [9] , Andersen (2016)), 

who all show the added value of tweets and, more generally, of 

textual data, in economics and finance. 

Indeed twitter data offers the opportunity to extract data that 

can complement market prices and that can, in addition, “replace”

market information when not available (as it occurs for banks that 

are not listed). 

To extract from tweets data that can be assimilated to mar- 

ket prices, their text has to be preprocessed using semantic anal- 

ysis techniques. In our context, if financial tweets on a number 

of banks are collected daily, semantic analysis allows to obtain a 

daily “sentiment” that expresses, for each day, how each consid- 

ered bank is, on average, being evaluated by twitterers. 

In this paper, we propose to build graphical Gaussian mod- 

els using daily variation of bank “sentiment”, and to integrate 

them with graphical models based on market data, by means of 

a Bayesian approach. This allows to obtain a comprehensive mea- 

surement framework of bank interconnectedness, that can be em- 

ployed to understand contagion effects. 

The novelty of this paper is twofold. From a methodolog- 

ical viewpoint, we propose a framework, based on graphical 

Gaussian models, that can estimate systemic risks with models 

based on two different sources: financial markets and financial 

tweets, and suggest a way to combine them, using a Bayesian 

approach. 

From an applied viewpoint, we propose a novel usage of big 

data contained in financial tweets, and show that such data can 

shed further light on the interrelationships between financial in- 

stitutions. 

The rest of the paper is organised as follows: in Section 2 we 

introduce our proposal; in Section 3 we apply our proposal to 

financial and tweet data on the Italian banking market and, finally, 

in Section 4 we present some concluding remarks. 

2. Methodology 

We first introduce the graphical network models that will be 

used to estimate relationships between banks, both with market 

and tweet data. 

Relationships between banks can be measured by their partial 

correlation, that expresses the direct influence of a bank on an- 

other. Partial correlations can be estimated assuming that the ob- 

servations follow a graphical Gaussian model, in which � is con- 

strained by the conditional independences described by a graph 

(see e.g. Lauritzen, [19] ). 

More formally, let X = ( X 1 , ..., X N ) ∈ R N be a N -dimensional ran- 

dom vector distributed according to a multivariate normal distribu- 

tion N ( μ, �) . Without loss of generality, we will assume that the 

data are generated by a stationary process, and, therefore, μ = 0 . 

In addition, we will assume throughout that the covariance matrix 

� is not singular. 

Let G = (V, E) be an undirected graph, with vertex set V = 

{ 1 , ..., N } , and edge set E = V × V, a binary matrix, with elements 

e ij , that describe whether pairs of vertices are (symmetrically) 

linked between each other ( e i j = 1 ), or not ( e i j = 0 ). If the vertices 

V of this graph are put in correspondence with the random vari- 

ables X 1 , ..., X N , the edge set E induces conditional independence 

on X via the so-called Markov properties (see e.g. Lauritzen, [19] ). 

In particular, the pairwise Markov property determined by G 

states that, for all 1 ≤ i < j ≤ N : 

e i j = 0 ⇐⇒ X i ⊥ X j | X V \{ i, j} ; (1) 

that is, the absence of an edge between vertices i and j is equiva- 

lent to independence between the random variables X i and X j , con- 

ditionally on all other variables x V \ { i, j } . 

Let the elements of �−1 , the inverse of the variance-covariance 

matrix, be indicated as { σ ij }, Whittaker [26] proved that the fol- 

lowing equivalence also holds: 

X i ⊥ X j | X V \{ i, j} ⇐⇒ ρi jV = 0 (2) 

where 

ρi jV = 

−σ i j 

√ 

σ ii σ j j 
(3) 

denotes the ij th partial correlation, that is, the correlation between 

X i and X j , conditionally on the remaining variables X V \ { i, j } . 

Therefore, by means of the pairwise Markov property, and given 

an undirected graph G = (V, E) , a graphical Gaussian model can be 

defined as the family of all N -variate normal distributions that sat- 

isfies the constraints induced by the graph on the partial correla- 

tions, as follows: 

e i j = 0 ⇐⇒ ρi jV = 0 (4) 

for all 1 ≤ i < j ≤ N . 

Stochastic inference in graphical models may lead to two dif- 

ferent types of learning: structural learning, which implies the es- 

timation of the graphical structure G that best describes the data, 

and quantitative learning, that aims at estimating the parameters 

of a graphical model, for a given graph. 

Structural learning can be achieved choosing the graphical 

structure with maximal likelihood. To this aim, we now recall the 

expression of the likelihood of a graphical Gaussian model. 

For a given graph G , consider a sample X of size n . For a subset 

of vertices A ⊂N , let �A denote the variance-covariance matrix of 

the variables in X A , and define with S A the corresponding observed 

variance-covariance sub-matrix. 
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