
ARTICLE IN PRESS

JID: NEUCOM [m5G; May 9, 2017;20:12]

Neurocomputing 0 0 0 (2017) 1–4

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Original software publication

Gaussian kernel smooth regression with topology learning neural

networks and Python implementation

Zhiyang Xiang, Zhu Xiao, Dong Wang

∗, Jianhua Xiao

College of Computer Science and Electronics Engineering, Hunan University, Changsha 410082, China

a r t i c l e i n f o

Article history:

Received 19 July 2016

Revised 11 November 2016

Accepted 16 January 2017

Available online xxx

Keywords:

Kernel density estimation

Semi-supervised regression

Python

a b s t r a c t

Topology learning neural networks such as Growing Neural Gas (GNG) and Self-Organizing Incremen-

tal Neural Network (SOINN) are online clustering methods. With GNG and SOINN implemented as basic

learners, this software completes two machine learning tasks, namely density estimation and regression.

A kernel density estimation framework is implemented to transform the topology learning neural net-

works into density estimation methods. Besides, a kernel smoother to implement supervised and semi-

supervised regression is devised. Moreover, the implemented frameworks can be used to transform other

clustering methods into density estimation, supervised regression and semi-supervised regression.

© 2017 Elsevier B.V. All rights reserved.

Software metadata

(executable) Software metadata description

Current software version 0.1

Permanent link to executables of this version https://github.com/Neurocomputing/NEUCOM- D- 16- 02468

Legal Software License BSD-3

Computing platform/Operating System BSD, Linux, OS X, Microsoft Windows, Unix-like.

Installation requirements & dependencies Python 2.7, numpy 1.09 + , sklearn 0.15+, python-graph 1.8

If available, link to user manual - if formally published include a

reference to the publication in the reference list

https://sbxzy.github.io

Support email for questions lordxzy@qq.com

Code metadata

Code metadata description

Current code version 0.1

Permanent link to code/repository used of this code version https://github.com/Neurocomputing/NEUCOM- D- 16- 02468

Legal Code License BSD-3

Code versioning system used none

Software code languages, tools, and services used Python

Compilation requirements, operating environments & dependencies Python 2.7, numpy 1.09 + , sklearn 0.15+, python-graph 1.8

If available Link to developer documentation/manual https://sbxzy.github.io

Support email for questions lordxzy@qq.com

1. Introduction

The topology learning neural networks of Growing Neural Gas

(GNG) and Self-Organizing Incremental Neural Networks (SOINN)

are further developments of the famous Self-Organizing Map

(SOM). Unfortunately, among the mainstream machine learning

∗ Corresponding author.

E-mail address: wangd@hnu.edu.cn (D. Wang).

softwares such as Sklearn [1] , there is no such implementations. In

addition, there has not been an publicly available implementation

of the improved SOINN [2] .

Semi-supervised learning is an active research area. There are

great effort s in classification algorithm researches, but for semi-

supervised regression, there is not enough attention.

The main contributions of the work are as follows.

http://dx.doi.org/10.1016/j.neucom.2017.01.051

0925-2312/© 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Z. Xiang et al., Gaussian kernel smooth regression with topology learning neural networks and Python imple-

mentation, Neurocomputing (2017), http://dx.doi.org/10.1016/j.neucom.2017.01.051

http://dx.doi.org/10.1016/j.neucom.2017.01.051
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
https://github.com/Neurocomputing/NEUCOM-D-16-02468
https://sbxzy.github.io
https://lordxzy@qq.com
https://github.com/Neurocomputing/NEUCOM-D-16-02468
https://sbxzy.github.io
http://lordxzy@qq.com
mailto:wangd@hnu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2017.01.051
http://dx.doi.org/10.1016/j.neucom.2017.01.051

2 Z. Xiang et al. / Neurocomputing 0 0 0 (2017) 1–4

ARTICLE IN PRESS

JID: NEUCOM [m5G; May 9, 2017;20:12]

1. A novel semi-supervised regression framework called Semi-

Supervised Learning Gaussian Kernel Smoother (SSL-GKS) is

proposed.

2. Kernel density estimation based on GNG and SOINN is imple-

mented.

3. The proposed framework can be used in combine with any

clustering methods for semi-supervised regression.

2. Problems and background

From statistical point of view, the regression learning task is

equivalent to modeling the joint distribution of explanatory and re-

sponse variables. According to kernel density estimation (KDE) [3] ,

joint distribution of explanatory variables X and response variables

Y can be represented by weights of clustering centers W = { W i } ,
where W i ∈ R

d and index i are used for iteration of all cluster cen-

ters, c = { c i } is the distribution of clustering centers, and s is the

smooth parameter. The learning task of KDE can be written as

P (X, Y | W , c , s) . According to Nadaraya–Watson estimator [3] and

its multivariate case in [4] , clustering based regression task, i.e.

P (Y | X; W , c , s) , can be written as

ˆ Y = f (X) =

∑

i

c i Y i w i (X) ∑

j c j w j (X)
(1)

w i (X) =

1 √

(2 π) d | H | exp (−0 . 5(X − W i)
T H

−1 (X − W i)) (2)

d is the number of dimensions, and H is a diagonal matrix with

squares of bandwidth h along the diagonal calculated as the vari-

ance of dataset along each dimension multiplied by a smooth pa-

rameter: h 2
k

= sδ2
k

. In KDE, s is non-parametrically chosen. However,

in regression a different strategy must be employed for that regres-

sion should emphasize on fitting the test dataset while KDE only

fits the training dataset.

We propose a semi-supervised learning process to address this

problem. Denote a labeled dataset as D L = { X L , Y L } , and unlabeled

dataset D U = { X U , Y U } , and clustering weights on them W L and W U

respectively, and clustering weights of the explanatory variables

as W

X
L and W

X
U . The SSL learning purpose can be formulated as

P (Y | X; W L

⋃

W U , c , s) . W U is unknown, while the similarity rela-

tionships between W L and W U can be approximated by W

X
L and

W

X
U . By using W

X
L and W

X
U to calculate a smooth parameter that

fits the complete dataset rather than the training dataset only, we

propose the following framework

P (Y | X ; W L , c , s) = P (Y | X ; W L , c , s) P (s | W

X
L , W

X
U) (3)

Since joint distributions can be learned by topology preserv-

ing and topology learning neural networks [5,6] , regression can

also be accomplished by such neural networks. In this work, we

implement the Gaussian kernel smoother of Eq. (1) , and the SSL

framework in Eq. (3) , and two topology learning neural networks,

namely GNG and SOINN, to accomplish the regression task.

2.1. The proposed SSL-GKS framework

Using H = diag (sδ2
1
, sδ2

2
, . . . , sδ2

k
, . . .) to rewrite the KDE equa-

tion:

P (X | s) =

∑

i

1 √

(2 π) d s d
∏

k δ
2
k

exp (−0 . 5 s −1 (X − W i)
T �(X − W i))

(4)

where � = diag (δ−2
1

, δ−2
2

, . . . , δ−2
k

, . . .) . Assume that a cluster cen-

ter W U ∈ W

X
U is generated by the most likely (training set) cluster

center. Since each cluster center represents the center of a Gaus-

sian distribution with the same covariance matrix H , we select the

Mahalanobis distance to calculate the similarity between cluster

centers.

Then the likelihood function of the cluster centers gen-

erated by test dataset can be written as L (s | W

X
L , W

X
U) = ∏

W U ∈ W

X
U

∏ K
i =1 P (W U | W (i) ; s) where W (i) means the i th near-

est cluster center (generated by training set) to W U . Replacing

P with Gaussian kernel, the log-likelihood function becomes

L (s | W

X
U) =

∑

W U ∈ W

X
U

∑ K
i =1 (ln

c i √

(2 π) d
∏

k δ
2
k

− 0 . 5 d ln s − 0 . 5 s −1 X i)

where X i is the Mahalanobis distance (W U − W (i)) T �(W U − W (i))

between W U and its i th nearest cluster center. Then, from

∂ L (s | X(t))
∂s

= 0 we have

s =

∑

W U ∈ W

X
U

∑ K
i =1 X i

K| W

X
U | d

(5)

If the smooth parameter s is specified by the user rather than

Eq. (5) , the bandwidth will simply be calculated as h =

ˆ δ| N| s [7] . In

this case, the regression is only supervised rather than SSL. Rewrit-

ing the regression function in Eq. (1) , we have the final regression

function

f (X (t)) =

∑

W i ∈ N

c i Y i exp (−0 . 5 s −1 (X − W i)
T �(X − W i)) ∑

W j ∈ N c j exp (−0 . 5 s −1 (X − W j) T �(X − W j))
(6)

Note that in Eq. (5) only L (s | W

X
U) is maximized. To maximize

L (s |D L , { X U }) , i.e. to adjust smooth parameter according to the

complete dataset, the user will have to modify D U to make it in-

clude the training dataset as D L ⊂ D U .

3. Software framework

3.1. Software architecture

The software is composed of 5 parts. (1) ‘utils.py’ : Sup-

porting utilities for csv file reading and Python dict operations.

(2) ‘isoxnn2.py’ and ‘gng2.py’ : GNG and SOINN algorithms. (3)

‘ui_isoinn.py’ and ‘ui_gng.py’) Programming interfaces for GNG

and SOINN. (4) ‘gks.py’ : SSL-GKS implementation (5) ‘reg_inn.py’

and ‘reg_gng.py’ : Regression programming interfaces.

3.2. Software functionalities

Main functionalities are implemented by 4 Python classes listed

below.

1. class pygks.gks.GKS: By implementing Eq. (6) , weights of clus-

tering centers and their distribution is constructed for the re-

gression purpose.

2. class pygks.ui_pygks.data_block: SOINN training and results vi-

sualization and topology features generation.

3. class pygks.reg_gng.GNGregressor: Supervised and semi-

supervised regression with GNG and SSL-GKS.

4. class pygks.reg_inn.ISOINNregressor: Supervised and semi-

supervised regression with SOINN and SSL-GKS.

4. Empirical results

There are two sets of experiments on 6 datasets. First, the typi-

cal SSL setting is employed, where comparison results are on vary-

ing labeled datasets with labeling percentages growing. Second,

we move to a real application, namely the traffic flow prediction.

The datasets are downloaded from the Caltrans Performance mea-

surement Systems (PEMS) database [8] . 6 days of data beginning

from Nov. 24th, 2014 are chosen as training datasets, and the data

from Nov. 30th, 2014 as the testing datasets. The selected detec-

tor numbers are ‘I880S’, ‘SR120E’, ‘US101N’ and ‘I5N’. ‘wine’ and

Please cite this article as: Z. Xiang et al., Gaussian kernel smooth regression with topology learning neural networks and Python imple-

mentation, Neurocomputing (2017), http://dx.doi.org/10.1016/j.neucom.2017.01.051

http://dx.doi.org/10.1016/j.neucom.2017.01.051

Download English Version:

https://daneshyari.com/en/article/4947138

Download Persian Version:

https://daneshyari.com/article/4947138

Daneshyari.com

https://daneshyari.com/en/article/4947138
https://daneshyari.com/article/4947138
https://daneshyari.com

