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a b s t r a c t 

Topology learning neural networks such as Growing Neural Gas (GNG) and Self-Organizing Incremen- 

tal Neural Network (SOINN) are online clustering methods. With GNG and SOINN implemented as basic 

learners, this software completes two machine learning tasks, namely density estimation and regression. 

A kernel density estimation framework is implemented to transform the topology learning neural net- 

works into density estimation methods. Besides, a kernel smoother to implement supervised and semi- 

supervised regression is devised. Moreover, the implemented frameworks can be used to transform other 

clustering methods into density estimation, supervised regression and semi-supervised regression. 

© 2017 Elsevier B.V. All rights reserved. 

Software metadata 

(executable) Software metadata description 

Current software version 0.1 

Permanent link to executables of this version https://github.com/Neurocomputing/NEUCOM- D- 16- 02468 

Legal Software License BSD-3 

Computing platform/Operating System BSD, Linux, OS X, Microsoft Windows, Unix-like. 

Installation requirements & dependencies Python 2.7, numpy 1.09 + , sklearn 0.15+, python-graph 1.8 

If available, link to user manual - if formally published include a 

reference to the publication in the reference list 

https://sbxzy.github.io 

Support email for questions lordxzy@qq.com 

Code metadata 

Code metadata description 

Current code version 0.1 

Permanent link to code/repository used of this code version https://github.com/Neurocomputing/NEUCOM- D- 16- 02468 

Legal Code License BSD-3 

Code versioning system used none 

Software code languages, tools, and services used Python 

Compilation requirements, operating environments & dependencies Python 2.7, numpy 1.09 + , sklearn 0.15+, python-graph 1.8 

If available Link to developer documentation/manual https://sbxzy.github.io 

Support email for questions lordxzy@qq.com 

1. Introduction 

The topology learning neural networks of Growing Neural Gas 

(GNG) and Self-Organizing Incremental Neural Networks (SOINN) 

are further developments of the famous Self-Organizing Map 

(SOM). Unfortunately, among the mainstream machine learning 
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softwares such as Sklearn [1] , there is no such implementations. In 

addition, there has not been an publicly available implementation 

of the improved SOINN [2] . 

Semi-supervised learning is an active research area. There are 

great effort s in classification algorithm researches, but for semi- 

supervised regression, there is not enough attention. 

The main contributions of the work are as follows. 
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1. A novel semi-supervised regression framework called Semi- 

Supervised Learning Gaussian Kernel Smoother (SSL-GKS) is 

proposed. 

2. Kernel density estimation based on GNG and SOINN is imple- 

mented. 

3. The proposed framework can be used in combine with any 

clustering methods for semi-supervised regression. 

2. Problems and background 

From statistical point of view, the regression learning task is 

equivalent to modeling the joint distribution of explanatory and re- 

sponse variables. According to kernel density estimation (KDE) [3] , 

joint distribution of explanatory variables X and response variables 

Y can be represented by weights of clustering centers W = { W i } , 
where W i ∈ R 

d and index i are used for iteration of all cluster cen- 

ters, c = { c i } is the distribution of clustering centers, and s is the 

smooth parameter. The learning task of KDE can be written as 

P (X, Y | W , c , s ) . According to Nadaraya–Watson estimator [3] and 

its multivariate case in [4] , clustering based regression task, i.e. 

P (Y | X; W , c , s ) , can be written as 

ˆ Y = f (X ) = 

∑ 

i 

c i Y i w i (X ) ∑ 

j c j w j (X ) 
(1) 

w i (X ) = 

1 √ 

(2 π) d | H | exp (−0 . 5(X − W i ) 
T H 

−1 (X − W i )) (2) 

d is the number of dimensions, and H is a diagonal matrix with 

squares of bandwidth h along the diagonal calculated as the vari- 

ance of dataset along each dimension multiplied by a smooth pa- 

rameter: h 2 
k 

= sδ2 
k 

. In KDE, s is non-parametrically chosen. However, 

in regression a different strategy must be employed for that regres- 

sion should emphasize on fitting the test dataset while KDE only 

fits the training dataset. 

We propose a semi-supervised learning process to address this 

problem. Denote a labeled dataset as D L = { X L , Y L } , and unlabeled 

dataset D U = { X U , Y U } , and clustering weights on them W L and W U 

respectively, and clustering weights of the explanatory variables 

as W 

X 
L and W 

X 
U . The SSL learning purpose can be formulated as 

P (Y | X; W L 

⋃ 

W U , c , s ) . W U is unknown, while the similarity rela- 

tionships between W L and W U can be approximated by W 

X 
L and 

W 

X 
U . By using W 

X 
L and W 

X 
U to calculate a smooth parameter that 

fits the complete dataset rather than the training dataset only, we 

propose the following framework 

P (Y | X ; W L , c , s ) = P (Y | X ; W L , c , s ) P (s | W 

X 
L , W 

X 
U ) (3) 

Since joint distributions can be learned by topology preserv- 

ing and topology learning neural networks [5,6] , regression can 

also be accomplished by such neural networks. In this work, we 

implement the Gaussian kernel smoother of Eq. (1) , and the SSL 

framework in Eq. (3) , and two topology learning neural networks, 

namely GNG and SOINN, to accomplish the regression task. 

2.1. The proposed SSL-GKS framework 

Using H = diag (sδ2 
1 
, sδ2 

2 
, . . . , sδ2 

k 
, . . . ) to rewrite the KDE equa- 

tion: 

P (X | s ) = 

∑ 

i 

1 √ 

(2 π) d s d 
∏ 

k δ
2 
k 

exp (−0 . 5 s −1 (X − W i ) 
T �(X − W i )) 

(4) 

where � = diag (δ−2 
1 

, δ−2 
2 

, . . . , δ−2 
k 

, . . . ) . Assume that a cluster cen- 

ter W U ∈ W 

X 
U is generated by the most likely (training set) cluster 

center. Since each cluster center represents the center of a Gaus- 

sian distribution with the same covariance matrix H , we select the 

Mahalanobis distance to calculate the similarity between cluster 

centers. 

Then the likelihood function of the cluster centers gen- 

erated by test dataset can be written as L (s | W 

X 
L , W 

X 
U ) = ∏ 

W U ∈ W 

X 
U 

∏ K 
i =1 P (W U | W (i ) ; s ) where W ( i ) means the i th near- 

est cluster center (generated by training set) to W U . Replacing 

P with Gaussian kernel, the log-likelihood function becomes 

L (s | W 

X 
U ) = 

∑ 

W U ∈ W 

X 
U 

∑ K 
i =1 ( ln 

c i √ 

(2 π) d 
∏ 

k δ
2 
k 

− 0 . 5 d ln s − 0 . 5 s −1 X i ) 

where X i is the Mahalanobis distance (W U − W (i )) T �(W U − W (i )) 

between W U and its i th nearest cluster center. Then, from 

∂ L (s | X(t)) 
∂s 

= 0 we have 

s = 

∑ 

W U ∈ W 

X 
U 

∑ K 
i =1 X i 

K| W 

X 
U | d 

(5) 

If the smooth parameter s is specified by the user rather than 

Eq. (5) , the bandwidth will simply be calculated as h = 

ˆ δ| N| s [7] . In 

this case, the regression is only supervised rather than SSL. Rewrit- 

ing the regression function in Eq. (1) , we have the final regression 

function 

f (X (t)) = 

∑ 

W i ∈ N 

c i Y i exp (−0 . 5 s −1 (X − W i ) 
T �(X − W i )) ∑ 

W j ∈ N c j exp (−0 . 5 s −1 (X − W j ) T �(X − W j )) 
(6) 

Note that in Eq. (5) only L (s | W 

X 
U ) is maximized. To maximize 

L (s |D L , { X U } ) , i.e. to adjust smooth parameter according to the 

complete dataset, the user will have to modify D U to make it in- 

clude the training dataset as D L ⊂ D U . 

3. Software framework 

3.1. Software architecture 

The software is composed of 5 parts. (1) ‘utils.py’ : Sup- 

porting utilities for csv file reading and Python dict operations. 

(2) ‘isoxnn2.py’ and ‘gng2.py’ : GNG and SOINN algorithms. (3) 

‘ui_isoinn.py’ and ‘ui_gng.py’) Programming interfaces for GNG 

and SOINN. (4) ‘gks.py’ : SSL-GKS implementation (5) ‘reg_inn.py’ 

and ‘reg_gng.py’ : Regression programming interfaces. 

3.2. Software functionalities 

Main functionalities are implemented by 4 Python classes listed 

below. 

1. class pygks.gks.GKS: By implementing Eq. (6) , weights of clus- 

tering centers and their distribution is constructed for the re- 

gression purpose. 

2. class pygks.ui_pygks.data_block: SOINN training and results vi- 

sualization and topology features generation. 

3. class pygks.reg_gng.GNGregressor: Supervised and semi- 

supervised regression with GNG and SSL-GKS. 

4. class pygks.reg_inn.ISOINNregressor: Supervised and semi- 

supervised regression with SOINN and SSL-GKS. 

4. Empirical results 

There are two sets of experiments on 6 datasets. First, the typi- 

cal SSL setting is employed, where comparison results are on vary- 

ing labeled datasets with labeling percentages growing. Second, 

we move to a real application, namely the traffic flow prediction. 

The datasets are downloaded from the Caltrans Performance mea- 

surement Systems (PEMS) database [8] . 6 days of data beginning 

from Nov. 24th, 2014 are chosen as training datasets, and the data 

from Nov. 30th, 2014 as the testing datasets. The selected detec- 

tor numbers are ‘I880S’, ‘SR120E’, ‘US101N’ and ‘I5N’. ‘wine’ and 
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