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a b s t r a c t 

Considering the problems of parameter uncertainties and load disturbance appeared in induction mo- 

tor drive systems, a discrete-time command filtered adaptive position tracking control method based on 

neural networks is proposed in this paper. First, Euler method is used to describe the discrete-time dy- 

namic mathematical model of induction motors (IMs). Next, the neural networks technique is employed 

to approximate the unknown nonlinear functions. Furthermore, the “explosion of complexity” problem 

and noncausal problem, which emerged in traditional backstepping design, are eliminated by command 

filtered control technique. Simulation results prove that tracking error converges to a small neighborhood 

of the origin and the effectiveness of the proposed approach is illustrated. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In recent years, induction motors (IMs) have been intensively 

used in industrial applications for their advantages as low main- 

tenance, high performances and ruggedness, which has inspired 

many scholars for the study of the high-performance motion con- 

troller. However, because the dynamic model of induction motor 

is generally coupled, multivariable and highly nonlinear, getting 

the perfect dynamic performance is very difficult. What’s more, it 

can be easily influenced by parameter variations and external load 

disturbances. To solve the above problems, many control meth- 

ods have been proposed for IMs, such as dynamic surface con- 

trol [1,2] Hamiltonian control [3] , sliding mode control [4–6] back- 

stepping [7–9] , fuzzy logic control [10–13] , and some other con- 

trol methods [14–16] . Unfortunately, all these methods mentioned 

above were designed for continuous-time IM drive systems. And 

the design techniques of discrete-time control for IM were seldom 

mentioned. Considering stability and achievable performances of 

methods, the discrete-time control systems are generally regarded 

as superior to continuous-time control systems [14] . 

The backstepping control is considered to be one of the most 

popular techniques for controlling the nonlinear systems with lin- 

ear parametric uncertainty. However, during the backstepping de- 

sign procedure, the “explosion of complexity” problem [17] and 
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noncausal problem [18–20] arise. Recently, one method to over- 

come the noncausal problem in [21] is that transforming the sys- 

tem equation into a special form, but it will make the controller 

more complex. And several new techniques are proposed to solve 

this problem of “explosion of complexity” inherent in traditional 

backstepping such as dynamic surface control (DSC) [22–24] and 

command filtered backstepping control [25,26] . A novel adaptive 

fuzzy control combined DSC technology proposed in [27] elimi- 

nates the “explosion of complexity” problem by introducing first- 

order filters for the backstepping approach which will produce the 

filtering error. In order to resolve this issue, a command filtered 

backstepping control method is proposed by introducing a second- 

order filtering of the virtual input at each step in the conventional 

backstepping approach. Though “explosion of complexity” problem 

and noncausal problem can be got over by the command filter 

technique, the command filter technique has not been applied to 

nonlinear discrete-time systems with unknown parameters. 

In another research front line, many adaptive control methods 

are proposed in [28–31] to solve the uncertain nonlinear func- 

tions. The adaptive control methods via approximation theories 

are presented to cope with the nonlinear systems with paramet- 

ric uncertainty based on fuzzy logic system (FLS) [32] or neural 

networks (NNs) [33–35] approximation. The uncertain information 

can be approximated by NNs, which can be employed to control 

ill-defined or complex systems. And the RBF NN is widely used to 

approximate the uncertain nonlinearities [36–39] . 

Compared with the existing achievements, the main merits of 

the developed scheme can be summed up as follows: 1) The 

http://dx.doi.org/10.1016/j.neucom.2017.04.032 

0925-2312/© 2017 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.neucom.2017.04.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2017.04.032&domain=pdf
mailto:yjp1109@hotmail.com
http://dx.doi.org/10.1016/j.neucom.2017.04.032


204 Z. Zhou et al. / Neurocomputing 260 (2017) 203–210 

neural network command filtered backstepping control can solve 

the problem of “explosion of complexity” to alleviate the online 

calculational burden; 2) the noncausal problem can be got over 

by command filtering technique without transforming the system 

model into a predictor form; 3) the command filtered method can 

overcome the drawback of traditional method and gain a smaller 

overshoots. From the above facts, a discrete-time command filtered 

adaptive control method is developed for position tracking of IMs 

based on neural network. And the simulation results are provided 

to illustrate the effectiveness and robustness against the parameter 

uncertainties and load disturbances. 

2. Mathematical model of the IM drive system 

Induction motor’s dynamic mathematical model is described in 

the well known ( d − q ) frame as: ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d�

dt 
= ω, 

dω 

dt 
= 

n p L m 

L r J 
ψ d i q −

T L 
J 

, 

di q 

dt 
= −L 2 m 

R r + L 2 r R s 

σ L s L 2 r 

i q − L m 

n p 

σ L s L r 
ω ψ d − n p ω i d −

L m 

R r 

L r 

i q i d 
ψ d 

+ 

1 

σ L s 
u q , 

dψ d 

dt 
= −R r 

L r 
ψ d + 

L m 

R r 

L r 
i d , 

di d 
dt 

= −L 2 m 

R r + L 2 r R s 

σ L s L 2 r 

i d + 

L m 

R r 

σ L s L 2 r 

ψ d + n p ωi q + 

L m 

R r 

L r 

i 2 q 

ψ d 

+ 

1 

σ L s 
u d , 

where σ = 1 − L 2 m 
L s L r 

. n p , T L , J , L m 

, ω, � and ψ d represent the mutual 

inductance, load torque, inertia, pole pairs, rotor angular velocity, 

rotor position and rotor flux linkage. i d and i q stand for the d −
q axis currents. u d and u q are the d − q axis voltages. L s and R s 
mean the inductance, resistance of the stator. R r and L r denote the 

resistance, inductance of the rotor. 

By using the Euler method, the induction motor drivers’ dy- 

namic model can be written as: 

x 1 (k + 1) = x 1 (k ) + �t x 2 (k ) , 

x 2 (k + 1) = x 2 (k ) + a 1 �t x 3 (k ) x 4 (k ) − a 2 �t T L , 

x 3 (k + 1) = (1 + b 1 �t ) x 3 (k ) + b 2 �t x 2 (k ) x 4 (k ) 

− b 3 �t x 2 (k ) x 5 (k ) − b 4 �t 
x 3 (k ) x 5 (k ) 

x 4 (k ) 
+ u q (k ) b 5 �t , 

x 4 (k + 1) = b 4 �t x 5 (k ) + x 4 (k )(1 + c 1 �t ) , 

x 5 (k + 1) = (1 + b 1 �t ) x 5 (k ) + c 2 �t x 4 (k ) + b 4 �t 

x 2 3 (k ) 

x 4 (k ) 

+ b 3 �t x 2 (k ) x 3 (k ) + u d (k ) b 5 �t , (1) 

where �t is the sampling period and 

x 1 (k ) = �(k ) , x 2 (k ) = ω(k ) , x 3 (k ) = i q (k ) , 

x 4 (k ) = ψ d (k ) , x 5 (k ) = i d (k ) , 

a 1 = 

n p L m 

L r J 
, a 2 = 

1 

J 
, b 1 = −L 2 m 

R r + L 2 r R s 

σ L s L 2 r 

, 

b 2 = − L m 

n p 

σ L s L r 
, b 3 = n p , b 4 = 

L m 

R r 

L r 
, 

b 5 = 

1 

σ L s 
, c 1 = −R r 

L r 
, c 2 = 

L m 

R r 

σ L s L 2 r 

. (2) 

Lemma 1 ( [11] ) . The command filter is defined as 

z 1 ( k + 1 ) = ω n z 2 ( k ) �t + z 1 ( k ) 

z 2 ( k + 1 ) = { −2 ζω n z 2 (k ) − ω n ( z 1 (k ) − α1 (k ) ) } �t + z 2 ( k ) 

the input signal α1 ( k ) satisfies | α1 ( k + 1 ) − α1 ( k ) | ≤ ρ1 , 

| α1 ( k + 2 ) − 2 α1 ( k + 1 ) + α1 ( k ) | ≤ ρ2 for all k ≥ 0, where ρ1 , 

ρ2 are positive constants. And z 1 (0) = α1 (0) , z 2 (0) = 0 , then 

for any μ > 0, there exist ζ ∈ (0, 1], and ω n > 0, so we have 

| z 1 ( k ) − α1 ( k ) | ≤ μ and �z 1 ( k ) = | z 1 ( k + 1 ) − z 1 ( k ) | is bounded. 

The block diagram of the discrete-time neural network com- 

mand filtered controller for induction motor control system is 

shown as Fig. 1 . In this paper, the RBF NNs [21] are employed 

to approximate the continuous function ϕ( z ): R q → R as ˆ ϕ ( z ) = 

φ∗T P ( z ) , where z ∈ �z ⊂ R q is the input variable of the NNs and 

q is the input dimension, φ∗ = [∗
1 
, . . . , ∗

l 
] T , is the weight vec- 

tor with l being the NN node number. The define of NN and pa- 

rameters are shown in [21] . From [21] , we know || P i ( z i ( k ))|| 
2 ≤ l i , 

( i = 1 , . . . , n ) . 

3. Discrete-time command filtered neural network controller 

design 

In this section, the discrete-time controllers are designed for 

the IM drive system with backstepping. At each step, one com- 

mend filter is needed to filter the virtual control. For i = 1 , 2 , 4 , 

the commend filter is defined as: 

z i, 1 ( k + 1 ) = ω n z i, 2 ( k ) �t + z i, 1 ( k ) (3) 

z i, 2 ( k + 1 ) = { −2 ζω n z i, 2 (k ) − ω n ( z i, 1 (k ) − αi (k ) ) } �t + z i, 2 ( k ) 

(4) 

where αi ( k ) is the input and z i , 1 ( k ) is the output of the filter. The 

initial condition of the filter is z i, 1 (0) = αi (0) , and z i, 2 (0) = 0 . 

Step 1: The tracking error variable is defined as e 1 (k ) = x 1 (k ) −
x 1 d ( k ) with the desired signal x 1 d ( k ). According to Eq. (1) , we can 

obtain e 1 (k + 1) = �t x 2 (k ) + x 1 (k ) − x 1 d (k + 1) . Define the Lya- 

punov function as V 1 (k ) = 

1 
2 e 

2 
1 (k ) , and the difference of V 1 ( k ) can 

be written as 

�V 1 (k ) = −1 

2 

e 2 1 (k ) + 

1 

2 

[ x 1 (k ) + �t x 2 (k ) − x 1 d (k + 1)] 2 

The virtual control law α1 ( k ) is chosen as 

α1 (k ) = 

−x 1 (k ) + x 1 d (k + 1) 

�t 
(5) 

Define e 2 (k ) = x 2 (k ) − x 1 c (k ) , where x ic (k ) = z i, 1 (k ) , (i = 1 , 2 , 4) 

as the outputs of command filters. By using (5) , �V 1 ( k ) can be 

given as 

�V 1 (k ) = 

1 

2 

[ e 2 (k ) + x 1 c (k ) − α1 (k ) ] 
2 
�2 

t −
1 

2 

e 2 1 (k ) 

Step 2: By use of Eq. (1) , e 2 (k + 1) is obtained as e 2 (k + 1) = 

a 1 �t x 3 (k ) x 4 (k ) + x 2 (k ) − a 2 �t T L − x 1 c (k + 1) . Define the Lyapunov 

function as V 2 (k ) = V 1 (k ) + 

1 
2 e 

2 
2 
(k ) . Furthermore, differencing V 2 ( k ) 

yields 

�V 2 (k ) = −1 

2 

e 2 1 (k ) + 

1 

2 

[ x 2 (k ) + a 1 �t x 3 (k ) x 4 (k ) 

− a 2 �t T L − x 1 c (k + 1) ] 
2 + �V 1 (k ) 

In this paper, due to the parameter T L being bounded in prac- 

tice system, we assume the T L is unknown, but its upper bound 

is d > 0. Namely, | T L | ≤ d, and we have −a 2 �t T L ≤ a 2 
2 
�2 

t 
2 + 

d 2 

2 . The 

virtual control law α2 ( k ) is constructed as 

α2 (k ) = 

−x 2 (k ) + x 1 c (k + 1) − a 2 2 �
2 
t 

2 
− d 2 

2 

a 1 �t x 4 (k ) 
(6) 

where x 1 c (k + 1) can be calculated by (3) . 

Remark 1. It can be seen that the virtual controller α2 ( k ) con- 

tains variable x 1 c ( k + 1 ) , which covers future information. And the 
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