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A B S T R A C T

Echo state networks (ESNs) have become one of the most effective dynamic neural networks because of its
excellent fitting performance in real-valued time series modeling tasks and simple training processes. The
original ESN concept used randomly fixed created reservoirs, and this concept is considered to be one of its
main advantages. However, ESNs have been criticized for its randomly created connectivity and weight
parameters. Determining the appropriate weight parameters for a given task is an important problem. An
optimization method based on mutual information (MI) is proposed in this study to optimize the input scaling
parameters and the structure of ESN to address the aforementioned problem and improve the performance of
ESN. The MI optimization method mainly consists of two parts: First, the scaling parameters of multiple inputs
are adjusted based on the MI between the network inputs and outputs. Second, some output weight connections
are pruned for optimization based on the MI between reservoir states. Furthermore, three MI-ESN models are
proposed for a fed-batch penicillin fermentation process. Our experimental outcomes reveal that the obtained
MI-ESN models outperform the ESN models without optimization and other traditional neural networks.

1. Introduction

A feature of batch processes is the disposal of crude materials for a
limited period to transform basic materials into outcomes. Batch
bioprocess operations have been used to generate products that have
high value additions in biological, chemical, pharmaceutical, and many
other growth processes. As such, monitoring the batch bioprocess
operation is crucial. The features of batch biological processes involve
the non-steady-state condition, strong nonlinearity, strong time-vary-
ing condition, batch-to-batch altering, and unpredictability caused by
floating crude materials [1], As such, an ideal model is important for
the complex modeling and control of fed-batch biological processes.
Effective process predictive models for online process monitoring play
primary roles in supplying truthful and reliable online measurement
and analysis with regard to the quality of key products or environ-
mental change factors because they ease prevention, and therefore,
mitigate the riskiness of processes [2]. Moreover, such predictive
models can significantly improve product quality.

Soft sensors are software-based sophisticated monitoring systems
that have gained credit and credibility in the academic and industrial
environments. Liu et al. developed a functioning nonlinear soft sensor

system that can be used to assist online modeling of batch processes
based on a just-in-time application method [3]. By contrast,
Pierantonio et al. argued in favor of a methodology for the automated
correction of misbehaviors of partial least squares (PLS) predictive
modeling in fed-batch processing [4]. Based on a multistage opera-
tional method, Yu [5] proposed a robust multi-way Gaussian mixture
model (MGMM) that can be used to arrange online soft sensors of the
fed-batch penicillin fermentation process. The computed results proved
that the proposed MGMM method significantly outperforms the
extensively accredited kernel PLS approach. Then, Yu [6] proposed a
support vector regression (SVR) system combined with Bayesian
inference (BI) theory and showed that the BI-SVR model can outper-
form the single SVR model when measurement predictions are needed.

Recurrent neural networks (RNNs) have recently been successfully
employed in addressing complexities in the measurement of temporal,
nonlinear, time-varying, and uncertainty-related operations [7–10].
Given the dynamic mechanism and ability of RNNs to process
temporally related information [11], such methods have been exten-
sively employed for complicated easily changing operations, such as
fed-batch processes.

Echo state networks (ESNs) are RNNs with a vast untrained
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recurrent part that features scattered connections and simple linear
readouts. ESNs are one of the most well-known types of RNNs because
of their excellent performance when nonlinear dynamic system model-
ing and chaos time series predictions are conducted. In ESNs, an
extensive and elaborate dynamic reservoir is built to collect several
features of inputs flowing through the supplying source, namely, the
reservoir, toward the output readout map. Prior to the establishment of
the ESN, the internal neuron topology connectivity and input scaling
parameter weights are generated randomly beforehand. A reservoir
may be stated as valid whenever it meets the requirement of a
necessary circumstance of the state dynamics referred to as the echo
state quality: The internal neuron state is an “echo” of the entire input
data stream from its commencement. The ESNs have generated
successful results when applied to different sequential domains, such
as time series predictions [12,13], fed-batch bioprocesses modeling [7],
wind speed forecasting [14] and speech processing [15]. Many varia-
tions of the original ESNs can be found in literature; for example,
hybrid circle reservoir ESN [16], leaky integrator ESN [17], and filter
neurons with delay & sum readout [18].

Reservoir properties (topology or connections) and weight para-
meters are important for learning performance. A proper understand-
ing of reservoir dynamics and measures for these dynamics is
important [19,20]. However, ESN has several limitations, such as few
reservoir properties, which can hardly be comprehended; a number of
manual parameters, which need tailored adjustments; and brute-force
searching, which aims to maximize the efficiency of the ESN models,
for instance, the size and spectral radius of internal neurons and the
scaling parameters of input data. The most prominent problem of the
ESN is its high-complexity random parameters. The influence of
hierarchical and structured topologies is not yet sufficiently under-
stood. Nonetheless, reservoirs require numerous trials, even luck, as
several parameters, such as the connectivity of internal neuron
topology and network parameter weights, are generated stochastically
beforehand. The stochastic topology connectivity of internal units and
network parameter weights will hardly be precisely sufficient to
establish a model and will equally hardly provide a clear analysis of
internal unit dynamics [21]. Thus, determining the appropriate weights
parameters and optimal reservoir for a given task are important.

Throughout the past periods of research, many scholars have
concentrated on new methodologies to optimize the internal neuron
dynamics by focusing on links between the parameters and perfor-
mance of internal neurons [22–24] and by reducing the number of
neurons and connectivity size [25,26]. Dutoit et al. [25] proposed a
pruning method called least angle regression and an output weight
regularization method called ridge regression (RR) to calculate the
readout matrix and increase the generalization ability of ESN.
Venayagamoorthy and Shishir [23] investigated the effects of ESN
performance obtained through the variation of two specific parameters,
namely, the spectral radius of the internal neuron matrix and the
settling time. Nonetheless, an approach on which parameter choice
ought to be based has not yet been outlined.

Mutual information (MI) has been demonstrated to be effective in
neuron network to measure the relationship of neuron information.
For instance, Janusz and Liang [27] proposed a method to reduce the
interconnections and large number of synaptic weights in self-orga-
nized neural network by using local interconnection based on MI.
Zhang et al. [28] presented an adaptive merging and splitting algorithm
based on the theory of MI to design feedforward neural networks. He
et al. [29] utilized a partial MI method to indentify the subset of
artificial neural network (ANN) inputs. Chen and Yan [30] proposed a
minimal redundancy maximal relevance-partial MI clustering ap-
proach to remove redundant hidden layer nodes of multilayer feedfor-
ward network. Besides MI method was also applied to optimize ANN by
some other researchers [31–33]. By the overview above, MI can be
utilized to measure the interrelation of neurons and prune the
redundant information or neurons in ANN. However, to our knowl-

edge, MI techniques for ESNs were rarely studied.
Because of the drawbacks of ESNs we described above. It is

important to determine the appropriate weight parameters and optimal
reservoir for a given task. This study presents a MI optimization
method to optimize the input scaling and the output weight connection
structure of ESN in fed-batch penicillin fermentation process. The
experimental results indicate that the proposed approach exhibits
superior performance in the fed-batch penicillin fermentation process.
The remainder of this study is organized as follows. Section 2 presents
a concise review of ESN training and design. The MI approach utilized
to design and prune ESN are outlined in Section 3. A fed-batch
penicillin fermentation process is discussed in Section 4. The results
are discussed in Section 5. Finally, Section 6 provides a brief conclu-
sion.

2. Echo state network and mutual information

2.1. Topology structure and training method of ESN

A typical ESN, which contains a recurrent reservoir, has l input
variables, m reservoir neurons, and n output variables, as shown in
Fig. 1. The state of internal neurons ts( ) and the state of output
variables to( ) at a specific time point t are expressed as follows [34]
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where f is the internal neuron stimulation
function, t u t u t u tu( )=[ ( ), ( ), ... , ( )]1 2 l

T represents the input
variable, t s t s t s ts( )=[ ( ), ( ), ... , ( )]1 2 m

T is the internal neuron
state, t o t o t o to( )=[ ( ), ( ), ... , ( )]1 2 n represents the output variable at a
specified time step t, Wu

s represents the input weight matrices, Ws
s

denotes the internal neuron connection matrices, Wo
s is the feedback

weight matrices, Ws
o denotes the output weight (readout) matrices, Wu

s ,
Ws

s, Wo
s , and Ws

o are m l× , m m× , m n× , and n m× weight matrices,
respectively. The initialization of reservoir state ts( ) is a zero vector.
The superscripted T represents transpose. The ESN structure without
feedback connections is an open-loop topology architecture that can
provide a one-step-ahead prediction for the time series problem. By
contrast, the ESN structure with feedback connections is a closed-loop
topology architecture that can provide an iterative prediction, which
are multiple steps ahead.
Ws

s, Wo
s , and Wu

s which are generated by using the stochastic numerical
values obtained from a uniform distribution, are immovable before the
training process begins. In the training process of RC, only the output

Fig. 1. The topology structure of a typical ESN. Connections that are trained in the ESN
are indicated by the dashed line arrows. Feedback weight connections that are possible
yet not required are indicated by the shaded line arrows. Connections that are randomly
generated and adjusted in the training process are indicated by the black solid lines.
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