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This paper addresses the problem of finite-time synchronization for a class of multi-layer nonlinear coupled
complex networks via intermittent feedback control. Firstly, based on finite-time stability theory, some novel
criteria are given to guarantee that the error system of drive-response systems is still finite-time stable under an
inherently discontinuous controller. Then, by proposing two kinds of intermittent feedback control laws,
sufficient conditions of finite-time synchronization of two kinds of multi-layer complex networks are derived,
respectively. The time delay between different layers is also taken into consideration. Finally, a numerical

example is provided to verify the effectiveness of the proposed methods.

1. Introduction

In the past few decades, the synchronization problem of complex
networks has attracted more and more attention in practical applica-
tions [1-6]. A basic complex network consists of some nodes and links
between the nodes, where each node is a dynamic system. Since the
problem of synchronization of chaotic systems has been studied in [1],
synchronization as a potential engineering application has been applied
into secure communication, neural network, biology and information
processing [7—11]. Up till now, there are lots of different types of
synchronization, for instance, complete synchronization [12], anti-
synchronization [13], projective synchronization [14] and cluster
synchronization [15,16].

It should be noted that information of different nodes is transmitted
based on a shared band-limited digital communication network. Thus,
it is interesting to study synchronization of complex networks with
delayed coupling. For example, global synchronization of a general
linear coupled network has been studied with a time-varying coupling
delay in [17]. Then, a developed generalized mixed outer synchroniza-
tion are also studied with a time-varying coupling delay [18]. In [19],
local and global synchronization of complex networks have been
studied with a fixed delay. In [20], global exponential synchronization
of nonlinear coupled dynamical networks are also considered with a
delayed coupling. However, the aforementioned results are based on
one or two layers network. Multi-layer networks which have more than
two layers can be seen as some sub-networks distributed in different
layers. For example, there exists a three-layers network about informa-
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tion transmission in a simple telephone network. Moreover, different
transmission delays between different layers should also be taken into
account. Therefore, synchronization of multi-layer networks with
delayed coupling are more significant.

Different from continuous control methods, intermittent controller
is implemented intermittently during a control period. Because of
easier implementation and smaller control cost, the problem of
synchronization under intermittent control has attracted lots of atten-
tion [21-26], since the intermittent control is firstly proposed in [27].
Synchronization with finite time convergence has advantages to
enhance the robustness and to overcome the disturbance in practical
control and applications [28]. The existing results about finite-time
stability and finite-time synchronization have been considered in [29—
36]. Therefore, it is very interesting to investigate finite-time synchro-
nization of complex networks via intermittent feedback control. Some
related results have been studied in our previous works [37-40],
however, the linear coupling is adopted in these works.

In this paper, finite-time synchronization of multi-layer nonlinear
coupled complex networks is studied via intermittent feedback control.
Firstly, based on finite-time stability theory, some novel criteria are
given to guarantee that the nonlinear system is still finite-time stable.
Then, by proposing two kinds of intermittent feedback controllers,
sufficient conditions of finite-time synchronization of two complex
networks are derived. The main contributions of this paper include: i)
some novel criteria are given to guarantee finite-time synchronization
of the error system of the drive-response systems under an intermittent
controller; ii) then, based on these presented criteria, finite-time
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synchronization of two kinds of multi-layer nonlinear coupled net-
works is studied via periodically intermittent feedback control and
aperiodically intermittent feedback control, respectively. The time
delay between different layers is also taken into consideration. The
corresponding sufficient conditions are also given to guarantee that the
error system is finite-time stable.

This paper is organized as follows. In Section 2, some definitions of
finite-time stability and some novel finite-time criteria are given. In
Section 3, by proposing two kinds of intermittent feedback controllers,
sufficient conditions of finite-time synchronization of delayed complex
networks are derived respectively. Section 4 provides an example to
illustrate the validity of the proposed design methods. Finally, this
paper is concluded in Section 5.

2. Preliminaris

Let R" denote n-dimension real space and R* denote 1-dimension
positive real space. For any x € R", let || x || = (x"x)"/2. For a matrix
P € R™, dnu(P) and Ayi(P) denote the largest and the smallest
eigenvalues of the symmetric matrix P, respectively.

Consider the following master system (drive system):

x(t) = P(x(1)), 1

where x(r) € R, x(0) = xp, ¢(-): D - R" is continuous on an open
neighborhood D of the origin x(r) = 0 with ¢(0) = 0.

Definition 1. [41] The zero solution of (1) is finite-time convergent if
there is an open neighborhood U c D of the origin and a function
T U\ {0} = (0, ), such that V xy € U, the solution y(z, x¢) of system
(1) is defined and w(t, xo) € U{0} for re€][0,T(xg), and
lim, 7o (¢, Xo) = 0. Then, y(z, xo) is called the settling time. If the
zero solution of system (1) is finite-time convergent, the set of point x,
such that y(z, xg) — 0 is called the domain of attraction of the solution.

Definition 2 (/41]). The zero solution of (1) is finite-time stable if it is
Lyapunov stable and finite-time convergent. When, ¢ = O = R", the
zero solution is said to be globally finite-time stable.Consider the
following slave system (response system):

y() = (@), u()), @

where y(r) € R", y(0) =y, u(t) €R? is the controller, u(0) = uy,
@(-): R" x R? —» R" is continuous. Denote the solutions of (1) and (2)
as x(t, xo) and y(z, y,, uo), respectively. For the notational simplicity, we
denote x(z, xo) simply by x(t), and y(z, y,, uo) by y(t). Next, we give the
definition of finite-time synchronization of systems (1) and (2).

Definition 3. Systems (1) and (2) are said to be synchronization in

finite time if there exists an open neighborhood U c R" of the origin

such that ¢y = y; — xo € U and a function 7;: U\ {0} - (0, + o) and
lim )II el = 0, [l el =0,V 1> Ti(eo),

t—=>Ti(eo.

where e(t) = y(r) — x(¢) denotes the synchronization error of systems
(1) and (2).

A continuous controller is designed in the form of
u(t) = Fle(r)), V t € [t9, + ). If there exists a Lyapunov function
V(e(t)) defined on a neighborhood U c R" of the origin such that
V(e(t)) < — aV'(e(t)), where a > 0, 0 < 5 < 1, from [42] and Definition
1, the error system (2)-(1) is synchronized in finite time. Based on our
previous work [37], a new controller is proposed as follows:

u(t) =0, to+ kT <t <ty+ (k+ h)T,
u(t) = Fle(r)), to+ (k+ )T <t<ty+ (k+ m)T,
u(t) =0, to+ (k+ )T <t<ty+ (k+ DT, 3)

where 0 < iy < h, < 1, T > 0 is the control period, 7, — & is the control
rate and k > 0 is a nonnegative integer. Now, sufficient conditions are
given to guarantee that the error systems (1)—(2) is synchronized in
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finite time via the controller (3).

Theorem 1. Consider systems (2) and (1) with controller (3), if there
is a Lyapunov function V(e(z)) defined on a neighborhood U c R" of
the origin such that

V(e(t)) <0, to+ kT <t<ty+ (k+ m)T,

Vie®) < — aV'(e@)), to+ (k+ T <t <ty + (k+ m)T,
V(e(t)) <0, to+ (k+m)T<t<ty+ (k+ DT, 4

hold, where 0 < iy < h <1, a > 0, 0 < 5 < 1, then, the error system
(2)-(1) is synchronized in finite-time. In addition, for any given to, the
following inequality holds:

th<t<T,

)

VIie(®) < VI7eo) = al = m)(hy — )t = to = W),

V1 ~"Ieq)

v t>T,whereT=m

and V(e(r)) = 0,
the settling time.

+ to + iT denotes

Proof. The proof is based on a recursive approach and the following
auxiliary function

H@®) = V7110 = M + a(l = n)(hy = lt, (6)

where M = VI7(ey) + a(l — n)(hy — h)(to + KT). It is also easy to
obtain that H(#) < 0. For simplicity, we denote V(e(t)) as V(1).
Step 1: For any ¢ € [1, fy + IT), we have

Vi) < VI (t).

Then, we can obtain

H(@) < V'7(tg) — M + a(l — n)(hy — hy)t < 0.

For any ¢ € [ty + IT, ty + h,T), we have

V=) < Vi + T — a(l = )t = to — WT)
—a(l —mt+ a(l — )ty + MT).

< V()

Then,
H(1) < V'7(19) — a(l =t + a(l = n)(to + MT) — M + a(l — n)(hy — )
t<—all —mt+all —n)to+ MT) — a(l — n)(hy — h)(ty + W T)
+a(l =i — k)t < a(l = = (ha = W)(to + T — 1) < 0.
7
For any 1 € [ty + T, to + T), we have
Vi) < VI + ) < V(1) = a(l = m)(to + hoT) + a(l — i)
(f() + h]T)
Then,
H(t) < V7(10) — a(l — )t + hoT) + a(l — n)(to + hT) — M
+a(l =y = h)t < a(l = n)hy = b))t —to — MT = T) <O0.
(8)
Step 2: For any ¢ € [ty + T, to + (1 + h)T), we have
V=) < VI + T) < VItg) — a(l = n)(to + oT) + a(l — i)
(l() + th).
Then,
H(t) < V'7(19) — a(l — )ty + BoT) + a(l — n)(to + WT) — M
+a(l =)y — h)t < a(l = n)(hy = )t —tg — T = T) <O0.
9
For any 7 € [t + (1 + h)T, 1y + (1 + hy)T), we have
V=) < V7t + T+ WT) — a(l — p)t — to — T — T) < VI7(ty)
—a(l —mt+ a(l —lty + (y + DT — (h, — hy)T].
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