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In this paper, the problem of fault-tolerant control for a class of affine nonlinear systems subject to state
constraints is investigated. Firstly, the nearly optimal controller design for the constrained nominal
system is considered. By introducing proper slack variables, the nonlinear optimal control problem with
state constraints is transformed into an unconstrained one for an augmented nonlinear system. Then, an
adaptive weight update algorithm based on neural network (NN) is given to solve the Hamilton—Jacobi-
Bellman (HJB) equation, which can generate an approximated optimal control policy for the augmented
system. In order to achieve the fault-tolerant control objective, an NN observer with novel adaptive laws
is constructed to identify the actuator faults. An integral sliding mode fault-tolerant control scheme is
employed to guarantee the stability of the constrained faulty system, which is designed using the fault
estimations and the obtained nominal nearly optimal control policy. Finally, simulations are presented to
illustrate the effectiveness of the proposed method.

Nearly optimal control
Neural network

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Increasing requirements for high performance make the control
systems more and more complex, which means that the system
components are more likely to suffer failures (actuator faults, sensor
faults and even the system faults). Once the faults occur, the control
systems may end up with the performance degradation and even
instability if the faults are not well handled. Therefore, fault tolerant
control (FTC) [1-3], in which the aim is to guarantee the acceptable
performance and stability for fault-free or faulty systems, has re-
ceived considerable attention in the past decades. Among the dif-
ferent schemes, FTC can mainly be classified into two categories:
passive and active approaches. Robust control theory is usually used
in the passive FTC approaches [4-6], which is easy to design and
implement but has limited fault-tolerant ability. By contrast, the
active FTC approaches can compensate for faults and modify the
control policy adaptively based on the fault detection and estima-
tion schemes (see [7-9]). From the above related literature, it is
found that most of the FTC methods are considered for linear sys-
tems. As a matter of fact, the nonlinearity exists commonly in most
of the practical control systems [10]. Therefore, it is more desirable
to design FTC methods for nonlinear systems.
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Actually, all the practical systems are subject to some kinds of
physical constraints more or less [11], which are often known as
input and state constraints. Violation of these constraints may
result in performance degradation or even safety hazard. The ex-
istence of these constraints also makes it more difficult to design
suitable control policies to stabilize systems and achieve the de-
sirable performance. Therefore, the control problems with con-
straints have received more and more attention in the past years.
For example, as an effective methodology, model predictive con-
trol (MPC) has been widely adopted to handle both constraints and
performance issues in a finite horizon optimal control framework
[12,13]. However, the MPC methods are almost numerical and
often have heavily computational complexity. Barrier Lyapunov
function approach is another well-known method to deal with the
constrained control problems [14-16], in which the backstepping
control method is often used for nonlinear systems with special
triangular structures. Meanwhile, optimal control is also a suitable
methodology to solve the constrained control problems. In [17,18],
the penalty functions were introduced to approximately transform
the constrained optimal problems into unconstrained ones. A
novel transformation technique was proposed in [19] to transform
an optimal control problem with a scalar state inequality con-
straint into an unconstrained problem. To overcome the singular
arcs problem in [19], a special quadratic function was added to the
performance index in [20], which is suitable for finite horizon
optimal control problems with a scalar control variable and a
scalar state inequality constraint. Moreover, it is still difficult to
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solve the transformed optimal control problems for nonlinear
systems.

The main obstacle to solve the nonlinear optimal control pro-
blem is that the HJB equation is difficult or impossible to solve
[21]. Although the dynamic programming method [22] was pro-
posed to overcome the obstacle, it is often implemented off-line
and vulnerable to the influence of “curse of dimensionality”. Re-
cently, using NN to approximately solve the nonlinear optimal
control problems has been considered widely [23,24], which is
derived from the adaptive dynamic programming (ADP) method
proposed in [25]. Based on policy iteration (PI) [26], an adaptive
actor-critic structure was presented in [27] to solve the infinite
horizon optimal control problem for nonlinear systems with
known dynamics. Bian et al. [28] proposed a novel ADP method to
solve the optimal control problem for unknown nonaffine non-
linear systems. In [29,30], the nonlinear optimal control and op-
timal tracking problems with input constraints were considered.
Although the ADP methods have been investigated widely to
handle the nonlinear control problem [31-35], it has hardly been
employed to handle the FTC problem of nonlinear systems with
state constraints.

In order to compensate the effect of faults, various approaches
have been proposed. In addition to H, control, another effective
approach to handle the FTC problem is the sliding mode control
(SMC) method [36-38]. To avoid the reaching phase problem in
the classical SMC methods, the integral SMC (ISMC) was proposed
in [39,40]. For nonlinear systems, the ISMC is not easy to imple-
ment because the controller stabilizing the nominal nonlinear
dynamics is difficult to design without specific assumptions for
system structures. In [41,42], nonlinear fault tolerant control
methods were proposed based on the integral sliding mode con-
trol allocation scheme, while it was assumed that there exists a
known controller guaranteeing the stability of the nominal system.

Motivated by the aforementioned analysis, the current study is
aimed at designing a nearly optimal sliding mode FTC scheme for
affine nonlinear systems with state constraints. The main con-
tributions of this paper are summarized as follows:

1. To avoid the appearance of singular arcs in the transformation
technique of [19] and modifying the finite horizon performance
index in [20], new slack functions are introduced to transform
the optimal control problem with state inequality constraints
into an unconstrained one which can be solved based on the
ADP method.

2. An NN-based observer and an adaptive sliding mode control
method are combined to compensate the faults and guarantee
the nearly optimal performance of the sliding mode dynamics.

The rest of this paper is organized as follows: The problem is
formulated in Section 2. In Section 3, the design method of the
nearly optimal control policy for the nominal constrained non-
linear system is proposed. It is followed by designing the fault
identification and FTC control strategy in Section 4. Then, simu-
lation results are given in Section 5 to verify the effectiveness of
the proposed method. Finally, Section 6 draws the conclusion.

Notations: XT denotes the transpose of a matrix X, I represents
the identity matrix with appropriate dimension. R" denotes the n
dimensional Euclidean space. diag (X, X, ..., X;) denotes a block
diagonal matrix with matrices X, X;, ..., X; on its main diagonal.
We define the norms of a vector a = (a, a, ..., @)’ as lal = Zf:] la;!
and ||a|| = \/Z{L] aiz. Amin (X) is defined as the minimum eigenvalue
of matrix X. tr(X) denotes the trace of the matrix X.

2. System description and preliminaries

Consider a class of continuous-time nonlinear systems:
X(t) =fx@©) + gx)u(®), )]

where x(t) € R" is the measurable system state, u(t) € R™ is the
control input, fx(t)) € R" and gx(t)) € R™™ are differentiable
and Lipschitz continuous with f(0) = 0. To simplify writing, x(t) is
abbreviated to x in some subsequent formulas.

The state vector x is considered to be constrained with the
following way:

Lix) <0, j=1,..1 )

where Li(x) is the p;th order differentiable function, and it is as-
sumed that u appears firstly in the pjth derivative of Li(x). It is
assumed that the set &, = {xI[;j(x) <0, j=1,...,1} contains the
origin.

It is known that actuators may become faulty in practical ap-
plication. In this paper, the system model with actuator faults is
given as follows:

2O =f®+g@u® + @t - DA, 3
where
ot —T)= 0, t<T .

1, otherwise, 4

which means that the abrupt faults are considered.

It is known that NNs have good capabilities of nonlinear
function approximation. Considering the Weierstrass higher-order
approximation theorem [43] and the results of [44], a three-layer
NN is sufficient to approximate nonlinear systems with any degree
of nonlinearity on a compact set. Thus, the nonlinear function
I'(x) € Rlo can be represented as

Ir'x) = Woo (Vox) + e(x), ®)

where W, e RloxMo and Vp € RNox" are ideal weights, Ng is the
number of the neurons. () and e(x) € Rl are the nonlinear ac-
tivation function and the function approximation error,
respectively.

The objective is to design a suitable control u = uq to stabilize
the nominal system (1) without violating the constraints in (2) and
to optimize the performance index

V) = fw [Q (x(z)) + u'Ru]dr,
t (6)
where Q (x): R" — R is a continuous positive definite function that
satisfies Amin ”X” < Q(X) < Qrnax ||X||, where qmin and qmax are
proper positive constants. R > 0 are suitable symmetric matrices.
Meanwhile, a fault identification scheme is designed. As soon as
actuator faults are detected, the fault-tolerant controller
U =ug+ u; is activated to guarantee the stability of the faulty
system with the constraints (2) and the nearly optimal perfor-
mance of the sliding mode dynamics.
To ensure the control objective, the following assumptions are
needed.

Assumption 1. The ideal NN weights Wy and V, are bounded, that
is || Wy || < Wa,ll Vo || € V. The NN activation function and the ap-
proximation error are bounded, that is || 6 (x)|| < & and || e(x)|| < &.

Assumption 2. g(x) is full column rank and is bounded for any x.
There exists a positive constant g such that || gx)|| < g&. There
exists a proper bounded function g(x) so that q(x)g (x) is invertible
for any x.

Remark 1. Assumption 1 is commonly used in the literature based
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