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a b s t r a c t

This paper considers the output consensus problem of tracking a desired trajectory for a group of higher-
order nonlinear strict-feedback multi-agent systems over directed communication topologies. Only a
subset of the agents is given direct access to the desired trajectory information. A distributed adaptive
consensus protocol driving all agents to track the trajectory is presented using the backstepping tech-
nique and neural networks. The Lyapunov theory is applied to guarantee that all signals in the closed-
loop system are uniformly ultimately bounded and that all agents' outputs synchronize to the desired
trajectory with bounded residual errors. Compared with prior work, the dynamics of each agent dis-
cussed here is more general and does not require the assumption “linearity in the unknown parameters”
or the matching condition. Moreover, the bounded residual errors can be reduced as small as desired by
appropriately choosing design parameters. Simulation results are included to demonstrate the effec-
tiveness of the proposed methods.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, research on multi-agent systems has attracted a
considerable amount of attention due to its potential applications
in sensor networks, monitoring and surveillance, and unmanned-
air-vehicle formations [1]. One major topic of interest is the con-
sensus control design of multi-agent systems. The current con-
sensus methods can be roughly categorized into two classes,
namely, leaderless consensus and leader-following consensus (i.e.,
distributed tracking) [2]. Most of the results on consensus in the
existing literature are presented for linear multi-agent systems
[3–5]. However, it is well known that, in engineering, many sys-
tems have more complicated dynamics and need to be modeled by
nonlinear dynamics, such as nonholonomic mobile robots [6] or
robotic manipulators [7]. Therefore, compared with linear multi-
agent systems, consensus control of nonlinear multi-agent sys-
tems is more valuable for practical application, and it is also more
challenging due to the complexity of its system dynamics.

Recently, distributed consensus control approaches [8–10] have
been developed for nonlinear multi-agent systems and have received
increasing attention. For a class of first-order nonlinear multi-agent

systems, Hou et al. [8] presented a distributed control method to solve
the consensus problem by employing an adaptive neural networks
(NN) scheme. Chen et al. [9] extended the result [8] to first-order
time-delay multi-agent systems with nonlinear dynamics and an
undirected communication topology. A Lyapunov–Krasovskii func-
tional is constructed to compensate for the uncertainties of unknown
time delays. Previously, [10] investigated the output synchronization
of higher-order multi-agent systems with parameter uncertainty. One
common feature in the above results [8–10] is that the proposed
control methods can only solve the leaderless consensus problem. In
real-life applications, the multi-agent systems usually need to track a
leader or a desired trajectory rather than rendezvousing to a common
value (see, for example, flocks, herds and schools [11]). Therefore, the
leader-following consensus of multi-agent systems is closer to real-life
applications than leaderless consensus.

As an alternative, a series of papers dealt with the leader-following
consensus problem of nonlinear multi-agent systems. Distributed
adaptive control algorithms [12–14] were proposed for first-order
nonlinear multi-agent systems, in which the neural networks were
used to actively compensate for the agent's uncertain dynamics. Fur-
thermore, the online computation burden has been taken into account
in [14]. In [15], Das and Lewis studied the leader-following consensus
problem for multi-agent systems with second-order integrator dy-
namics over a directed connected graph. The results [13,15] were fur-
ther generalized to general higher-order nonlinear systems in the
Brunovsky form in [16,17]. It is worth noting that the unknown non-
linear dynamics was assumed to be in the range space of the control
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input. That is, the uncertainties must satisfy the matching condition in
[13,15–17], which may limit their applications. With further develop-
ment, Wang et al. [18] proposed a backstepping-based distributed
adaptive controller to achieve output consensus tracking with strict-
feedback multi-agent systems. Moreover, the design strategy is suc-
cessfully applied to solve a formation control problem for multiple
nonholonomicmobile robots. Nevertheless, the control approach in [18]
suffers from the assumption that the unknown nonlinear dynamics
must satisfy the condition “linearity in the unknownparameters”. In real
world applications, such an assumption cannot always hold. This gap in
knowledge has been highlighted in many papers, such as [8,12].

Motivated by the previous discussion, in this paper, we intend to
design a distributed tracking control method for general higher-order
nonlinear strict-feedback systems over a directed communication to-
pology. Suppose that only a subset of the agents is direct given access
to the information of the desired trajectory. Using the backstepping
technique and the approximation technique of NN, a distributed
adaptive consensus control law is constructed for each agent based on
only the relative state between itself and its neighbors. Meanwhile, the
projection algorithm is applied to ensure that the estimated para-
meters remain in some known bounded sets. It is shown via Lyapunov
theory that the proposed adaptive method can guarantee that all
signals in the closed-loop system are uniformly ultimately bounded
and that all agents' outputs synchronize to the desired trajectory with
bounded residual errors. Moreover, the errors can be reduced as small
as desired by appropriately choosing design parameters.

Compared with the aforementioned work, the main contribu-
tions of this paper consist of the following aspects:

1. Although the work in [12–14] addressed distributed tracking
issues of the multi-agent systems, the results are only suitable
for first-order multi-agent systems. However, in this paper, we
focus on the consensus problem of higher-order multi-agent
systems, which are more general and include first-order sys-
tems [12–14] as a special case.

2. In contrast to the leader-following consensus approaches for sec-
ond- or higher-order multi-agent systems [15–17], our proposed
algorithm does not require the matching condition but allows for
more general higher-order nonlinear systems with mismatched
uncertainties. Additionally, the results in [15–17] can only guarantee
that tracking errors are uniformly ultimately bounded, while our
proposed approach can make the tracking errors as small as
possible by appropriately choosing design parameters.

3. Although the work in [18] discussed the distributed adaptive control
problem for strict-feedback systems, its control approach suffers
from the assumption “linearity in the unknown parameters”. More-
over, each agent has to know its neighbors basis functions (see the
virtual controllers (17) and (25) in [18]). Contrarily, the proposed
approach in this paper does not require the assumption “linearity in
the unknown parameters”, and for each agent, only the relative state
between itself and its neighbors is needed in the controller design.

Throughout this paper, the following notations are used. 1N is
the N-vector of ones; ∥·∥ is the Euclidean norm of a vector;

∥ ∥ = { }H H HtrF
T is the Frobenius norm of matrix H with (·)tr

being the trace; σ̄ (·) and σ (·) are the maximum singular value and
the minimum singular value of a matrix, respectively.

2. Problem statement

2.1. Basic graph theory

Let = { }, be a directed graph to model communication
among N agents, where = { … }N1, , is the set of nodes

corresponding to each agent and ⊆ × is the set of edges.
( ) ∈i j, denotes that agent j can obtain information from agent i,
but not necessarily vice versa for a directed graph. In this paper,
self edges are not allowed, i.e., ( ) ∉i i, . The neighbors of agent i is

= { ∈ |( ) ∈ }N j j i,i . Denote the adjacency matrix by
= [ ] ∈ ×A a Rij

N N with =a 1ij if ( ) ∈j i, , and =a 0ij otherwise.
Define the in-degree matrix = { … }D d ddiag , , N1 and the Laplacian
matrix = −L D A, where = ∑ =d ai j

N
ij1 . A direct path from agent i to

agent j is a sequence of successive edges in the form
{( ) ( ) … ( )}i l l m k j, , , , , , . A directed graph has a spanning tree if
there exists an agent i called the root such that there is a direct
path from agent i to every other agent in the graph.

2.2. Problem formulation

Consider a group of ( ≥ )N N 2 nonlinear strict-feedback multi-
agent systems. The dynamics of the ith ( = … )i N1, , agent can be
modeled as

̇ = + (¯ ) = … −

̇ = + (¯ )

= ( )

+x x f x m n

x u f x

y x

, 1, , 1

,

, 1

i m i m i m i m

i n i i n i

i i

, , 1 , ,

, ,
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where ¯ = [ … ] ∈x x x R, ,i i i n
T n

,1 , , ∈u Ri , and ∈y Ri are the state
vector, the control input and the output of agent i, respectively;
¯ = [ … ]x x x, ,i m i i m

T
, ,1 , ; (·) ∈ = …f R m n, 1, ,i m, , is the unknown

smooth nonlinear function that contains both parametric and
nonparametric uncertainties. The control objective in this paper is
to design the control input ui to make yi converge to the desired
trajectory yd with a small error, while the other signals remain
bounded.

Remark 1. Obviously, when =f 0i m, , = … −m n1, , 1, the agent
model in (1) reduces to first-order nonlinear multi-agent systems
[12,13], second-order multi-agent systems [15], or higher-order
multi-agent systems [16,19]. It is also easy to see that model (1)
can take nonlinear subsystems with intrinsic mismatched un-
known parameters [18] as a special case. Therefore, the agent
model discussed in this paper is more general.

The desired trajectory yd can be expressed by a linear combi-
nation of r basis functions, that is,

∑ ϕ ϕ( ) = ( ) + = ( ) +
( )=

y t f t c f t c ,
2

d
l

r

d l d l d d
T

d d
1

, ,

where ( ) = [ ( ) … ( )] ∈f t f t f t R, ,d d d r
T r

,1 , is the vector of basis func-
tions that are available to all of the N agents. However,
ϕ ϕ ϕ= [ … ] ∈ R, ,d d d r

T r
,1 , and ∈c Rd are constant parameters that

are known only to a subset of agents.

Assumption 1 ([18]). The basis function ( ) ( ∀ = … )f t m r1, ,d m,
satisfies that ( ∀ = … )( )f l n0, ,d m

l
, is bounded, where the notation

( )fd m
l
, denotes the lth derivative of fd m, (i.e., =( )f d f dt/d m

l l
d m

l
, , ;

=( )f fd m d m,
0

, ). In addition, ( )fd m
l
, is supposed to be known to all agents

in the group.

Assumption 2. There exist positive constants ΦM and FM such that
ϕ Φ∥ ∥ ≤d M and ∥ ̇ ( )∥ ≤f t Fd M .

Remark 2. Notably, the trajectory given in (2) is a commonly
employed expression that has appeared in the relevant litera-
ture, such as [18,20,21]. As we know, a function can be re-
presented or approximated as a linear combination of a set of
prescribed basis functions in a function space. For example, yd
can be transformed into the Fourier series within a time interval
[ ]T0, as ω ω( ) = + ∑ [ ( ) + ( )]=

∞y t a a t b tcos sind n n n n n0 1 , where
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