
Robotics and Computer–Integrated Manufacturing 49 (2018) 98–104

Contents lists available at ScienceDirect

Robotics and Computer–Integrated Manufacturing

journal homepage: www.elsevier.com/locate/rcim

Dynamic obstacle avoidance for manipulators using distance calculation

and discrete detection

Dong Han

a , ∗ , Hong Nie

a , Jinbao Chen

a , Meng Chen

b

a State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, People’s Republic of

China
b Aerospace System Engineering Shanghai, Shanghai, People’s Republic of China

a r t i c l e i n f o

Keywords:

Dynamic obstacle avoidance

Distance calculation

Collision detection

Redundant manipulators

Human-robot interaction

a b s t r a c t

In order to avoid dynamic obstacle timely during manufacturing tasks performed by manipulators, a novel method

based on distance calculation and discrete detection is proposed. The nearest distances between the links of a

manipulator and the convex hull of an arbitrarily-shaped dynamic obstacle obtained from Kinect-V2 camera in

real-time are calculated by Gilbert–Johnson–Keerthi algorithm, and the minimum one is defined as the closest

distance between the manipulator and the obstacle. When the closest distance is less than a safe value, whether

the dynamic obstacle is located in the global path of the manipulator is determined by improved discrete collision

detection, which can adjust detection step-size adaptively for accuracy and efficiency. If the obstacle will collide

with the manipulator, set a local goal and re-plan a local path for the manipulator. The proposed method is

implemented in Robot Operating System (ROS) using C ++ . The experiments indicate that the proposed method

can perform safe and timely dynamic avoidance for redundant manipulators in human-robot interaction.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Avoiding dynamic obstacle accurately and timely for robots is one of

the major issues of robotic intelligent manufacture in unstructured envi-

ronment [1–3] , and it can ensure safety in the scenario of human-robot

interaction [4] . Hence much research has been carried out into colli-

sion avoidance beforehand. In [5] , it presented a neural-network path

planning algorithm based on reinforcement learning for avoiding obsta-

cles in complex unknown environments. In [6] , the authors proposed a

Weighted Least Norm method to avoid collision with a moving obstacle

for redundant manipulators. Luo et al. [7–8] adopted repulsive vectors

to achieve active whole-arm collision avoidance for 7-DoF redundant

manipulator. However, in these methods, the manipulators and obsta-

cles are simplified as primary geometric elements like lines, points and

spheres, which make the collision detection accuracy decrease.

In order to response more accurately to complex dynamic obstacles

in advance, lots of dynamic collision detection algorithms have been

proposed, which can be classified into two categories: discrete collision

detection (DCD) and continuous collision detection (CCD). Generally

speaking, DCD algorithms check for collisions by sampling several con-

figurations in the planned trajectories and then adopting static-collision-

detection algorithms at these configurations. Consequently, they have a

high detection speed [9] and are applied widely in real-time operating,

∗ Corresponding author.

E-mail address: han_dongnuaa@126.com (D. Han).

but they may miss a collision due to the gaps between two adjacent con-

figurations, which is known as the tunneling problem. Li et al. [10] pro-

posed optimum discrete interval according to the minimum distance

between two objects for improving DCD algorithms.

Compared with DCD algorithms, CCD algorithms can completely

overcome the undetected problem by interpolating a continuous mo-

tion between successive configurations and detecting collision along the

whole of that motion [11] . However, the computation cost of CCD is ob-

viously increased and many researchers have focused on improving the

efficiency [12–13] . Redon et al. [14] presented a fast CCD method for ar-

ticulated models that used an “arbitrary in-between motion ” to interpo-

late motions between two successive time steps and checked collision on

the generated path by OBB-trees. Tang et al. [15] also implemented the

CCD of articulated models based on conservative advancement. These

algorithms need multiple static detections over a time interval. Unlike

the above methods, swept volume technology, which is the whole of all

points that belong to the trace of an arbitrary moving object during a pe-

riod, has been applied in more accurate collision detection [16–17] , but

creation of swept volumes is very complex, especially for redundant ma-

nipulators. Another approach of CCD is based on distance calculation.

At a broad level, the closest distance algorithms of convex bodies can be

categorized into two main classes: (1) Voronoi-regions-based methods,

such as Lin–Canny (LC) algorithm [18] , V-Clip [19] and SWIFT ++ [20] ;

(2) simplex-based methods, like Gilbert–Johnson–Keerthi (GJK) algo-

http://dx.doi.org/10.1016/j.rcim.2017.05.013

Received 22 November 2016; Received in revised form 28 May 2017; Accepted 30 May 2017

Available online 20 June 2017

0736-5845/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.rcim.2017.05.013
http://www.ScienceDirect.com
http://www.elsevier.com/locate/rcim
http://crossmark.crossref.org/dialog/?doi=10.1016/j.rcim.2017.05.013&domain=pdf
mailto:han_dongnuaa@126.com
http://dx.doi.org/10.1016/j.rcim.2017.05.013

D. Han et al. Robotics and Computer–Integrated Manufacturing 49 (2018) 98–104

Fig. 1. The point cloud image (left) and the 3D octree map (right) of a human arm.

rithm [21] . The GJK-based algorithms, by contrast, are more robust than

LC [22] and have simpler stored data structures [23] . Consequently, the

GJK algorithm has been widely applied in distance calculation and fast

collision detection [24–26] , but is not for non-convex bodies.

Considering the pros and cons of the above algorithms, this paper

presents a new dynamic- obstacle-avoidance method for redundant ma-

nipulators which is divided into two stages. The first stage utilizes the

GJK algorithm to estimate the closest distance between a redundant ma-

nipulator and a dynamic obstacle, wherein the links of the manipulator

are regarded as cylinders and the obstacle model from Kinect-V2 in real-

time is replaced with its convex hull. Apparently, cylinders and convex

hulls are much closer to the real manipulators and obstacles than those

primary geometric elements. When the closest distance is less than a safe

value, the second stage is started to accurately check whether or not the

complex obstacle will collide with the manipulator through DCD algo-

rithm. In order to overcome the tunneling problem of DCD, the step-size

for checking can be adjusted adaptively according to previous results.

Therefore, the proposed method is able to improve the accuracy and

efficiency of dynamic obstacle avoidance aiming at redundant manip-

ulators. Baxter robot is used to verify the performance of the proposed

method in ROS platform, where Baxter is an industrial robot with two

7-DOF arms built by Rethink Robotics [27–28] and ROS is a collection

of software frameworks for helping software developers create robot ap-

plications more efficiently [29] .

In the following, Section 2 presents the method used to build dy-

namic obstacle models. Section 3 then describes the dynamic-collision-

avoidance method using distance calculation and improved DCD and

Section 4 describes the final experimental results. The results are dis-

cussed in Section 5 . Finally, a conclusion is given in Section 6 .

2. Dynamic obstacle models

Generally, a planning scene of manipulators includes static obstacle

models for global planning and dynamic obstacle models for local plan-

ning. The real-time depth images of the scene are gathered by Kinect-V2

camera and then converted to 3D point cloud images. As for a dynamic

obstacle within certain range, its point cloud is obtained by filtering out

all points belonging to static obstacle models and manipulators from the

totality and then converted to a 3D octree map [30] , as shown in Fig. 1 .

In Fig. 1 , the scattered points are divided into different nodes of oc-

tree according to their positions. Therefore the occupied voxels of the 3D

map are well-organized by octree structure, which can reduce memory

requirement with lower accuracy. The Flexible Collision Library (FCL)

proposed in [31] is used for carrying out fast static collision detection

between octree maps and other rigid models in this paper.

Obviously, octree maps can not be directly used as the input of the

GJK algorithm for computing distances, because GJK is designed for con-

vex bodies and octree maps are not always convex. In order to solve this

problem, a point set, which consists of the center points of each voxel

in a octree map, is defined, and then the convex hull of this point set is

calculated by the QuickHull algorithm [32] . Although this method may

expand the volume of obstacles, it can greatly decrease the calculation

time.

Before running the QuickHull algorithm, the inner voxels of octree

map should be deleted for promoting the efficiency of convex hull cal-

culation, because their center points will never be the vertices of convex

hull. As mentioned above, the organization structure of the voxels is an

octree, and thus each voxel has a unique index in octree, as follows:

𝑰 𝒏 𝒅 𝑖 =

[
𝐼 𝑛 𝑑 𝑖𝑥 , 𝐼 𝑛 𝑑 𝑖𝑦 , 𝐼 𝑛 𝑑 𝑖𝑧

]T
(1)

where Ind ix , Ind iy , Ind iz are the index values of the i th voxel in X, Y, Z

directions, respectively. Consequently, the key of deleting inner voxels

is to classify all voxels in the map by index values:

(1) The voxels with the equal index values in X and Y directions are

classified as a class, and only the voxels with the maximum and min-

imum index values in Z direction are retained;

(2) Similarly, the remaining voxels are categorized in turn according to

the index values in Y and Z directions or X and Z directions, and as

many inner voxels as possible are eliminated, as shown in Fig. 2 .

In order to speed up the classification, the indexes are stored in a mul-

timap which is an associative container based on red-black tree in Stan-

dard Template Library (STL). In a multimap , the elements are formed by a

combination of a key value and a mapped value. The key values are gen-

erally used to sort and uniquely identify the elements, and the mapped

values store the content associated to this key. It means a key value

may have multiple mapped values that are stored in adjacent memory.

According to this characteristic, the index values in two directions are

combined into a key value and another one is the mapped value. Then

insert them into a multimap for classifying the indexes automatically and

the time complexity is O (n log n) due to red-black tree structure (n is the

number of voxels) [33] .

The performance of convex-hull computation with deleting the in-

ner voxels is compared with that without deleting, as shown in Fig. 3 .

Therefore, by using the above method, the points input to the QuickHull

algorithm can be reduced by up to 74%, and the total time of convex-

hull calculation can also be efficiently decreased by 39% in maximum.

The results of constructing convex hulls are shown in Fig. 4 , where

the non-convex models are converted to convex models for distance cal-

culation.

In summary, the dynamic obstacle obtained from Kinect-V2 is ap-

proximated as the convex hull of its octree map by mathematical mod-

eling. It is essential for real-time dynamic collision avoidance in the next

section.

3. Dynamic collision avoidance

3.1. Distance calculation based on GJK

The collision models of a redundant manipulator can be regarded

as three cylinders, as shown in Fig. 5 . Therefore, the closest distance

from the manipulator to an obstacle is the minimum one among the dis-

tances between the cylinders and the obstacle. As mentioned in Section

2 , convex hulls are used for describing complex obstacle models. So the

following focuses on calculating the distance between a convex hull and

a cylinder in three-dimensional space with the GJK algorithm.

The key of GJK is to get the support points of a convex set. The

support point s in a given direction d satisfies the following equation:

𝒅 ⋅ 𝒔 = max { 𝒅 ⋅ 𝒑 |𝒑 ∈ 𝐶} (2)

where C is an arbitrary convex set.

The support points of a convex hull that is usually a convex polyhe-

dron can be obtained by traversing all vertices of the convex hull. Hill

climbing is capable of speeding up the search for the support points,

especially for convex polyhedrons with many vertices, but this method

needs to know all the adjacent vertices of each vertex [34] .

99

Download English Version:

https://daneshyari.com/en/article/4948934

Download Persian Version:

https://daneshyari.com/article/4948934

Daneshyari.com

https://daneshyari.com/en/article/4948934
https://daneshyari.com/article/4948934
https://daneshyari.com

