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a b s t r a c t

Baseline designs have received considerable attention recently. Most existing methods for
finding best baseline designs were developed for completely randomized experiments.
How to select baseline designs for experiments undermultistratum structures has not been
studied in the literature. The purpose of this paper is to fill this gap and extend the use of the
baseline design for experiments with complex structures, such as split-plot experiments.
A framework for baseline designs under multistratum structures is established and a
generalized minimax A-criterion for selecting multistratum baseline designs which are
efficient and model robust is proposed. The coordinate-exchange algorithm is applied and
robust baseline designs under split-plot, split-split-plot, and block-split-plot structures,
which can be constructed via nesting operators repeatedly, are exemplified. A real case
study for industrial experiments is provided to demonstrate the application and data
analysis of multistratum baseline designs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Fractional factorial designs under the orthogonal parameterization have been widely studied over the past two decades.
Recently, a non-orthogonal baseline parameterization in factorial experiments has received considerable attention. Different
from the orthogonal parameterization, which defines the factorial effects via orthogonal contrasts, the baseline parameter-
ization defines the effects with reference to baseline (or control) levels of the factors. Mukerjee and Tang (2012) studied
two-level fractional factorial designs under baseline parameterization and established the K -aberration criterion. Based on
that criterion, Li et al. (2014) provided an efficient algorithm for searching minimum aberration baseline designs. Mukerjee
and Huda (2016) proposed a minimaxity approach and applied the approximate theory to find robust efficient baseline
designs. Miller and Tang (2016) explored the use of the two-level regular fractional factorial designs to generate baseline
designs. Mukerjee and Tang (2016) obtained optimal two-level regular designs under baseline parameterization via coset
and minimum moment aberration. Applications of the baseline parameterization in factorial experiments can be found in
Yang and Speed (2002), Glonek and Solomon (2004), Banerjee and Mukerjee (2008), and Zhang and Mukerjee (2013).

The baseline designs in the above articles were mainly studied under completely randomized experiments. In practice,
however, it is common that complete randomization is infeasible or uneconomic, and, hence, several stages of randomization
are considered in an experiment. This results in a multistratum structure. For example, if an experiment involves factors
whose levels are difficult to change, then complete randomization will increase the experimental cost due to frequently
changing levels of these factors. To reduce cost, the experimenter may first conduct a randomization for the level combina-
tions of the hard-to-change factors and then conduct a second randomization for the level combinations of the factors whose
levels are easy to change. The two-stage randomization forms a split-plot structure and the design used for this experiment is
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called the split-plot design (see Fisher, 1925; Goos and Vandebroek, 2001, 2003, 2004; Goos, 2002;Mukerjee and Fang, 2002;
Jones and Nachtsheim, 2009; Lin and Yang, 2015; Yang and Lin, 2017; Lin, 2018a). In split-plot experiments, the hard-to-
change factors and the easy-to-change factors are called the whole-plot factors and the subplot factors, respectively, and the
level combinations of thewhole-plot factors and the subplot factors are called thewhole plots and the subplots, respectively.
Experiments with more complex structures can be found in the literature, such as split-split-plot structures (see Jones and
Goos, 2009) and block-split-plot structures (see Trinca and Gilmour, 2001, 2015). The reader is referred to Cheng (2014) and
Lin (2018b) for multistratum designs under orthogonal parameterization.

Fractional factorial designs under baseline parameterization for multistratum experiments have not been explored and
how to select multistratum baseline designs has not been studied in the literature. The purpose of this paper is to fill this
gap and extend the use of the baseline designs for experiments with complex structures. To establish a criterion for selecting
multistratum baseline designs, we adopt the A-criterion in Mukerjee and Huda (2016) used for selecting baseline designs
in completely randomized experiments. It is known that the A-criterion is not a model-free criterion. A model must be pre-
specified for obtaining optimal A-efficient designs. If themodel ismisspecified, then the estimates of effectswill be biased. To
overcome this problem, Zhou (2001, 2008),Wilmut and Zhou (2011), Lin and Zhou (2013), and Yin and Zhou (2015) proposed
several minimaxity criteria for selecting orthogonal designs which are robust under model misspecification. Mukerjee and
Huda (2016) provided another version of the minimaxity criterion for obtaining robust baseline designs. These minimaxity
criteria were developed based on completely randomized experiments. In this paper, we propose a generalized minimax A-
criterion, which can be used for selecting baseline designs that are efficient andmodel robust formultistratum or completely
randomized experiments. We provide three examples to demonstrate the robust baseline designs under split-plot, split-
split-plot, and block-split-plot structures. These structures can be constructed via nesting operators repeatedly and are
special cases of the so-called simple block structures, which are special cases of orthogonal block structures introduced
in Speed and Bailey (1982).

The remainder of this paper is organized as follows. Section 2 introduces the notation and establishes a framework
for baseline designs under multistratum structures. Section 3 develops the generalized minimax A-criterion for selecting
robust multistratum baseline designs. A construction algorithm is given in Section 4. Section 5 provides examples for the
baseline designs under the split-plot, split-split-plot, and block-split-plot structures. Section 6 studies the sensitivity of the
best baseline designs to the ratios of random effects’ variances. A real case study for industrial experiments is provided
in Section 7 to demonstrate the application and data analysis of multistratum baseline designs. Section 8 contains the
concluding remarks.

2. Baseline designs in multistratum experiments

We first introduce the background and notation of baseline parameterization for completely randomized experiments
and then establish a framework and a criterion for baseline designs under multistratum structures.

2.1. Notation and background

Let D be a full factorial design withm factors F1, . . . , Fm. The levels of factor Fi, i = 1, . . . ,m, are coded as 0, 1, . . . , ai −1,
where 0 represents the baseline level. Define the set Ai = {0, 1, . . . , ai − 1}. There are N =

∏m
i=1ai treatment combinations

j1 · · · jm, where ji ∈ Ai. The full factorial model of D under baseline parameterization can be written as

τj1···jm =

∑
u1∈{0,j1}

· · ·

∑
um∈{0,jm}

θu1···um , (1)

where τj1···jm is the treatment effect of the treatment combination j1 · · · jm, θu1···um for u1 · · · um ̸= 0 · · · 0 is a main or
interaction effect parameter, depending on which ui’s are nonzero, and θ0···0 is the baseline effect. For example, in a 22

factorial involving factors F1 and F2, each at levels 0 and 1, there are four treatment combinations, j1j2 = 00, 01, 10, and
11, and the effects of the four treatment combinations are expressed as τ00 = θ00, τ10 = θ00 + θ10, τ01 = θ00 + θ01, and
τ11 = θ00 + θ10 + θ01 + θ11, where θ00 is the baseline effect, θ10 and θ01 are the main effects of F1 and F2, respectively, and θ11
is the interaction of F1 and F2. More examples can be found in Mukerjee and Tang (2012) and Mukerjee and Huda (2016). As
mentioned in Mukerjee and Tang (2012), baseline parameterization can arise naturally in many situations whenever there
is a control or baseline level for each factor. For instance, in toxicological studywith a two-level baseline design, the baseline
level 0 of each factor represents the absence of a particular toxin while the level 1 represents the presence of the toxin (Kerr,
2006); in industrial experiments for quality improvement by changing the settings of several machines, the baseline levels
represent the current settings (Banerjee and Mukerjee, 2008).

Consider now a reduced model of (1) which includes the baseline effect, all main effects, and perhaps some interactions.
Define the requirement set R which is constituted by the main effects and interactions in the reduced model. Denote by p
the dimension of R and write θ0 for the baseline effect θ0···0. Then the reduced model with respect to R can be expressed as

τ = θ01N + Zθ, (2)

where τ is the vector ofN treatment effects, 1N is anN×1 vector of ones, θ is the vector of the p parameters representing the
factorial effects in R, and Z is the N × p model matrix for θ. The reader is referred to Mukerjee and Huda (2016) for details.



Download	English	Version:

https://daneshyari.com/en/article/4949174

Download	Persian	Version:

https://daneshyari.com/article/4949174

Daneshyari.com

https://daneshyari.com/en/article/4949174
https://daneshyari.com/article/4949174
https://daneshyari.com/

