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a b s t r a c t

Adaptive Spatial Dispersion Clustering (ASDC), a new method of spatial data compression,
is specifically designed to reduce the size of a spatial dataset in order to facilitate sub-
sequent spatial prediction. Unlike traditional data and image compression methods, the
goal of ASDC is to create a new dataset that will be used as input into spatial-prediction
methods, such as traditional kriging or Fixed Rank Kriging,where using the full datasetmay
be computationally infeasible. ASDC can be classified as a lossy compressionmethod and is
based on spectral clustering. It aims to produce contiguous spatial clusters and to preserve
the spatial-correlation structure of the data so that the loss of predictive information is
minimal. An extensive simulation study demonstrates the predictive performance of these
adaptively compressed datasets for several scenarios. ASDC is compared to two other
data-reduction schemes, one using local neighborhoods and one using simple binning.
An application to remotely sensed sea-surface-temperature data is also presented, and
computational costs are discussed.

Published by Elsevier B.V.

1. Introduction

Very large spatial and spatio-temporal datasets are becoming more commonplace in social, commercial, and scientific
research. In the social and commercial realms, this is largely due to the expansion of the internet and the computerization
of many aspects of daily life. In science, new technologies for data collection and experimentation have led to the demand
for new analysis methods specifically designed for new data types. One area where this is especially true is Earth Science,
where satellite remote sensing data play an increasingly important role in understanding the physics of the Earth system
and interactions among its components. Remote sensing data can be massive, with hundreds of millions to billions of data
points collected per day, but at the same time their spatio-temporal coverage can be sparse, with gaps in coverage due to
orbit patterns and observing-technology limitations.

Spatial and spatio-temporal statistical inferences are key to obtaining maximum scientific return from these data, but
massiveness poses a serious challenge to conventional spatial-statistical modeling approaches. It is natural to look for ways
to make the computations more efficient, and various methods based on simplification of the statistical model have been
proposed. Some enforce sparsity on large spatial covariance matrices (Furrer et al., 2006; Kaufman et al., 2008) or precision
matrices (Besag and Kooperberg, 1995; Rue and Held, 2005; Lindgren et al., 2011; Eidsvik et al., 2014; Datta et al., 2016;
Gramacy and Apley, 2015; Nychka et al., 2015), and others use dimension reduction to reduce the number of parameters
required to specify covariance (Banerjee et al., 2008; Cressie and Johannesson, 2008; Finley et al., 2009; Nguyen et al.,
2012; Sang and Huang, 2012). However, with ever-increasing data-collection capabilities, the majority of these methods by
themselvesmay not be enough because they still require holding largematrices, such as basis-functionmatrices, inmemory.
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(a) Sea-surface temperatures. (b) Compressed data.

Fig. 1. Sea-surface temperature from the Advanced Microwave Scanning Radiometer 2 (AMSR-2) instrument on Global Change Observation Mission —
Water (GCOM-W) satellite with about 117,000 data points (a) and the corresponding compressed data to 400 data points (b). The black square highlights
the region of interest.

The methodology presented in this article, Adaptive Spatial Dispersion Clustering (ASDC), takes a different approach that is
intended to complement dimension-reduction and sparse methods: Our idea is to make the data size smaller in a way that
preserves the essential information required for good spatial prediction.

When a spatial dataset is massive, such as is the case for high-resolution global remote sensing data, spatial prediction
could be performed by limiting the data to a small region of interest, and ignoring the rest. In fact, local kriging and similar
methods rely on such an approach (Haas, 1990; Cressie, 1993; Hammerling et al., 2012). An alternative is to use compressed
data instead, where compression here means that data outside the region of interest have been aggregated to coarse
resolutions. This approach could be advantageous if aggregation is done in a way that preserves spatial information and
produces globally valid spatial covariance structures. ‘‘Gridding’’ or ‘‘binning’’, in which the entire spatial field is aggregated
to a coarse spatial resolution, is a form of naive data reduction that does not explicitly address the preservation of spatial
covariance.

Clustering is a basic tool of data compression, but spatial dependence is usually not incorporated directly into the ‘‘fidelity
to the data’’ part of the clustering criterion. In the case of image compression or segmentation, there are approaches that do
account for spatial dependencies and cluster coherence (Hu and Sung, 2006; Craddock et al., 2012), but the goal is to recreate
an approximation that is visually indistinguishable from the original image, rather than to preserve spatial contiguity and
spatial-dependence structure for purposes of inference per se.

In various applications to geospatial data, such as from geological bodies, earthquakes, or climate systems, clustering
has been performed to primarily determine spatially contiguous regions, where homogeneous processes are observed.
Spatial covariance structure is then incorporated to force spatial contiguity for clusters. The main approaches for clustering
geospatial data include using spatial coordinates as additional features, weighting feature dissimilarities by their spatial
covariances (Oliver and Webster, 1989; Bourgault et al., 1992), constraining clustering using spatial tessellation (Romary
et al., 2015; Heaton et al., 2017); and introducing covariance structure through model-based clustering (Ambroise et al.,
1997; Allard and Guillot, 2000; Guillot et al., 2006; François et al., 2006). See Fouedjio (2016b) for a detailed review of such
methods.

A very recent approach of Fouedjio (2016b, a) proposes clustering of data locations based on a spatially informed
dissimilarity measure, specifically a non-parametric, user-defined kernel estimator of a multivariate cross-variogram
function. Fouedjio (2016b) incorporates such a dissimilarity measure into hierarchical clustering to obtain assignment of
locations to spatially contiguous groups. Fouedjio (2016a) further defines a similarity measure and uses spectral clustering
for grouping of locations, although his work focuses on multivariate data for partitioning data locations into meaningful
spatially contiguous clusters and determining an optimal number of clusters. In contrast to ours, his cross-variogram-based
similaritymeasure is of a fixed form and does not allow the size of the clusters to be determined adaptively. See Von Luxburg
(2007) for a summary of spectral clustering and adiscussion of its relationship to spectral graph theory and graphpartitioning
problems.

Our method is used explicitly for data compression and incorporates key aspects of spatial covariances through the use
of a spatial dispersion function (Sampson and Guttorp, 1992). A demonstration is illustrated in Fig. 1. For spatial predictions
in a region of interest, data outside the region of interest are compressed by assigning geographic locations associated with
them to spatial clusters. Each spatial cluster is represented by the mean value of the data throughout the cluster. Cluster
assignments are obtained by applying spectral clustering (Ng et al., 2002) to a weighted similarity matrix that accounts for
covariances among locations outside the region of interest with each other, and covariances between locations inside and
outside of the regions of interest. This forces spatial contiguity, and it causes clusters near the region of interest to be smaller
than those far away because spatial covariance generally decreases with distance.
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