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a b s t r a c t

An efficient and flexible Bayesian approach is proposed for a dual-semiparametric regres-
sion model that models mean function semiparametrically and estimates the distribution
of the error term nonparametrically. Using a weighted Dirichlet process mixture (WDPM),
a Bayesian approach has been developed on the assumption that the distributions of
the response variables are unknown. The WDPM approach is especially useful for real
applications that have heterogeneous error distributions or come from a mixture of
distributions. In the mean function, the unknown functions are estimated using natural
cubic smoothing splines. For the error terms, several different WDPMs are proposed using
different weights that depend on the distances between the covariates. Their marginal
likelihoods are derived, and the computation of marginal likelihood forWDPM is provided.
Efficient Markov chain Monte Carlo (MCMC) algorithms are also provided. The Bayesian
approaches based on different WDPMs are compared with the parametric error model
and the Dirichlet process mixture (DPM) error model in terms of the Bayes factor using
a simulation study, suggesting better performance of the Bayesian approach based on
WDPM. The advantage of the proposed Bayesian approach is also demonstrated using the
credit rating data.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Semiparametric regression (Ruppert et al., 2003) has been widely used in many fields, including economics (Chib and
Greenberg, 2010), finance (Hannah et al., 2011; Jensen and Maheu, 2013), environmetrics (Mahmoud et al., 2016) and
biostatistics (Kim et al., 2003; Kim and Cohen, 2004; Kim et al., 2011; Pang and Zhao, 2012; Ortega Villa et al., 2017),
in which some covariates have a known relationship with a response while others do not. It mixes the parametric and
nonparametric parts together in the regression. The nonparametric part can be estimated using cubic smoothing splines
(Durrleman and Simon, 1989; Green and Silverman, 1994; Pagan and Ullah, 1999; Marsh and Cormier, 2002; Li and Racine,
2006; Chib and Greenberg, 2010). Although semiparametric regression has the flexibility of modeling both parametric and
nonparametric parts, parametric distributions often impose strong assumptions about the distribution of the unobserved
error or the distribution of the underlying latent variable. The error distribution is often assumed to be parametric, as with
normal distribution and t-distribution, when the outcomes are continuous. In ordinal models for categorical outcomes, the
model is almost always specified with logit or probit links. Chu and Ghahramani (2005) proposed Gaussian processes (GP)
for ordinal regression and introduced a generalization of the probit function.
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Parametric assumptions of error distributions are often not satisfied in real applications that have heterogeneous error
distributions or come from a mixture of a heterogeneous distribution. As a result, the model may easily turn out to be
misspecified, which thus influences the statistical inference. Therefore, we adopt a nonparametric Bayesian approach to
allow the semiparametric regression to bemore flexible. Our nonparametric Bayesian approach can apply to both continuous
and ordinal responses. Becausewe are interested in the functional relationship between the covariate and response variable,
in this paper, we model each covariate using the natural cubic smoothing splines.

First, let us consider that we have p + ns covariates and a continuous response variable y. The first p covariates can
be parametrically modeled with unknown parameters βp, and the other ns covariates w1, . . . , wns are nonparametrically
modeled with gζ (·), ζ = 1, . . . , ns. Our semiparametric model can be written as:

yi = x′

iβp + g1(wi1) + g2(wi2) + · · · + gnp(wi,np) + εi i = 1, . . . , n, (1.1)

where x′

iβp is the parametric function, gζ (·) (ζ ≤ ns) are unknown functions that are estimated using the cubic smoothing
splines by adopting the basis illustrated in Lancaster and Šalkauskas (1986) andWood (2006), and ε is the error termwhose
distribution shape needs to be captured.

In the parametric Bayesian approach, it is typical to assume that the distribution of εi has some known form fe(εi|θi),
where θi denotes the parameters of the distribution of the error term. The prior distribution of θi is also in some known form
G0. However, it is relatively challenging to derive convincing evidence about the distribution of the error. On the other hand,
in the nonparametric Bayesian approach, the Dirichlet process, which was formally introduced by Ferguson (1973), enables
us to construct the prior of θ in a nonparametric way. If we assume that the prior distribution of θ , say G, is sampled from a
Dirichlet process, this Dirichlet process mixture (DPM) model allows more flexibility than does assuming that G belongs to
some known family of distributions. Therefore, many existing studies have adopted DPM (Chib and Greenberg, 2010; Zhang
et al., 2014;Dunson et al., 2007;Dunson and Stanford, 2005;Ghosal, 2009; Pati andDunson, 2014; Chae et al., 2016) in various
problems such as density estimation, the asymptotic distribution, the outlier problem, and high-dimensional analysis.
Ghosal (2009) reviewed the role of the Dirichlet process (DP) and related prior distributions in nonparametric Bayesian
inference. Ghosal (2009) also discussed various properties of the Dirichlet process and provided the asymptotic properties
of posterior distributions. In addition, Pati and Dunson (2014) proposed robust Bayesian nonparametric regression which
automatically downweights outliers and influential observations using the varying residual density based on probit stick-
breaking (PSB) scale mixtures and symmetrized PSB (sPSB) location-scale mixtures. Recently, Chae et al. (2016) proposed
Bayesian sparse linear regression with unknown symmetric error. They studied full Bayesian procedures for sparse linear
regression when errors have a symmetric but otherwise unknown distribution. The unknown error distribution is endowed
with a symmetrized Dirichlet process mixture of Gaussian.

Although DPM has flexibility, it does not take into account the covariates’ information into the prior of θ . DPM assumes
that all of the θis follow the same prior distribution G. Therefore, DPM is not flexible enoughwhen the error distributions are
a mixture of heterogeneous distributions. To overcome this limitation, we can use the weighted Dirichlet process mixture
(WDPM).WDPMcan be viewed as the dependent Dirichlet process (DDP),which extendedDP by allowing cluster parameters
to vary with some covariates (MacEachern, unpublished). The idea ofWDPMwas proposed by Zellner (1986) and applied by
Dunson et al. (2007). The concept of WDPM comes from the idea that one can add the information provided by covariates
into the construction of prior distributions. Such a concept relaxes the constraint that all of the observations share the same
prior for the error-term parameter. Instead of a single prior, there are multiple candidate priors. The observations with
similar predictor values (covariates) are more likely to share the same prior, which is one of the available candidate priors.
Therefore, we can see that WDPM allows a higher degree of heterogeneity for the observations compared to DPM or the
parametric Bayesian model.

In summary, we have shown that, in the parametric Bayesian model, we have only one prior for all of the θ ′

i s, and such a
prior must belong to some known distribution family. In DPM, there is only one prior as well, although it is not necessarily
some known distribution. However, when the observations do not share the same prior distribution for θ , DPM is not
appropriate. WDPM can be an efficient alternative approach when a model based on a single prior-distribution assumption
fails to produce an adequate degree of accuracy.

In this paper, we incorporateWDPM in semiparametric regressions and propose the dual-semiparametricmodel because
we adopt semiparametric regression for the mean part and nonparametric Bayesian approaches for the error terms. We also
propose severalWDPMmodels using differentweight functions.We derive theirmarginal likelihood for statistical inference.
Efficient Markov chain Monte Carlo (MCMC) algorithms are provided. To the best of our knowledge, our approach is the
first to incorporate WDPM in semiparametric regression, propose efficient weights, and provide the marginal likelihood
derivation. Our weight functions in WDPM are compared with the weight function proposed by Dunson et al. (2007). We
further compare our WDPM models with parametric and DPM models in terms of the Bayes factor using both a simulation
study and real data and suggest some outperformances of our approach.

This article is organized as follows. In Section 2, we briefly review the basic idea of WDPM and propose several weight
functions for WDPM. In Section 3, we introduce the potential reason why WDPM can produce a better marginal likelihood
based on the Pólya urn for WDPM. In Section 4, we explain how to incorporate WDPM into the semiparametric regression.
In Section 5.1, the posterior computation is illustrated. In Section 5.2, the marginal likelihood computation is explained so
that it can be used for statistical inference. In Section 6, we conduct a simulation study to understand the performance of
our approach. In Section 7, we apply our method to the credit-rating data illustrated in Verbeek (2008). Finally, Section 8
provides our concluding remarks.
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