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a b s t r a c t

To reduce the cost and improve the efficiency of cohort studies, case-cohort design is a
widely used biased-sampling scheme for time-to-event data. In modeling process, case-
cohort studies can benefit further from taking parameters’ prior information, such as the
histological type and disease stage of the cancer in medical, the liquidity and market
demand of the enterprise in finance. Regression analysis of the proportional hazardsmodel
with parameter constraints under case-cohort design is studied. Asymptotic properties are
derived by applying the Lagrangian method based on Karush–Kuhn–Tucker conditions.
The consistency and asymptotic normality of the constrained estimator are established.
A modified minorization–maximization algorithm is developed for the calculation of the
constrained estimator. Simulation studies are conducted to assess the finite-sample per-
formance of the proposed method. An application to a Wilms tumor study demonstrates
the utility of the proposed method in practice.

© 2017 Published by Elsevier B.V.

1. Introduction

In many large cohort studies, themeasurements of primary exposure variables can be prohibitively expensive. For time-
to-event data, the case-cohort design is one of the most widely used cost-effective strategies, especially when the event rate
is low. Under a case-cohort design, the complete information of exposure variables is only assembled for a random sample
from the entire cohort (subcohort) and subjects outside the subcohort who experience the event (cases).

In the landmark article of Prentice (1986), case-cohort design was first formally proposed, a pseudo-likelihood method
was established for estimation of regression parameters. Since the publication of Prentice (1986), there are numerous and
extensive studies on case-cohort design and related statistical methodologies, including likelihood-basedmethods (Self and
Prentice, 1988; Chen, 2001; Lu and Shih, 2006; Tsai, 2009) and estimating equationmethods (Chen and Lo, 1999; Kulich and
Lin, 2000; Qi et al., 2005; Kang and Cai, 2009), among others.

In practice, some prior information on parameters with a certain of constraints may be available in themodeling process.
It is reasonable to take these constraints into account, since ignoring such information may cause an underestimate of
parameters’ uncertainty and a misled conclusion (Tan et al., 2005; Fang et al., 2006). There are many research on statistical
inferences for constrained problems. For completely observed data, Wang (1996, 2000) derived asymptotic properties of
restricted estimators in nonlinear regressions. Moore and Sadler (2006) and Moore et al. (2008) established asymptotic
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theory for the constrained maximum likelihood estimator. For data with censoring, Ding et al. (2015) developed inference
methods for the proportional hazards model with parameter constraints.

However, these existed studies are for simple random sampling observations. To the best of our knowledge, statistical
methodologies for model parameter with constraints have not yet been explored for failure time data from case-cohort
design. In this paper, we develop how to fit the proportional hazards model with parameter restrictions to failure time data
from case-cohort studies. The theoretical developments are challenging because of the presence of constraints. To overcome
the difficulties, we appeal for the Karush–Kuhn–Tucker conditions (Boyd and Vandenberghe, 2004), a well-known approach
in optimization with inequality constraints, to establish the asymptotic properties of the constrained estimator.

Another challenge arises from the numerical implementation of the constrained estimator. To this end, we adopt a
minorization–maximization (MM) algorithm, the essential idea ofwhich is to create a surrogate functionwith computational
superiority over the objective function in order to achieve optimization transfer (De Pierro, 1995; Becker et al., 1997; Lange
et al., 2000; Hunter and Lange, 2004; Lange, 2004, 2010). It is worth noting that the original MM algorithm cannot be applied
to the cases that model parameters are restricted. Ding et al. (2015) proposed a new MM algorithm for the computation of
the constrained estimator under the proportional hazards model. Taking the spirit, we develop a modified MM algorithm
for the constrained estimator under the case-cohort design by replacing the risk sets of the entire cohort involved in the
surrogate function proposed by Ding et al. (2015) with their subcohort counterparts.

The remainder of this paper is organized as follows.We fit data fromcase-cohort design to the proportional hazardsmodel
with constraints in Section 2, and derive the asymptotic properties for the constrained estimator in Section 3. In Section 4,
we propose a modified MM algorithm for implementation of the constrained estimation, and present a nonparametric
bootstrap approach for standard error estimation. In Section 5, we conduct simulation studies to evaluate the finite-sample
performance of the proposed method. An application to a data set from aWilms tumor study is provided in Section 6. Some
concluding remarks are stated in Section 7. All proofs are given in Appendix.

2. Design and estimation

2.1. Model and design

Suppose that there exists a study cohort of N independent subjects. Let T̃i denote the failure time and Ci denote the
censoring time or follow-up time for subject i (i = 1, . . . ,N). The observed time is Ti = min(̃Ti, Ci). Let ∆i = I (̃Ti ≤ Ci),
Yi(t) = I(Ti ≥ t) and Ni(t) = ∆iI(Ti ≤ t) denote the right-censoring indicator, the at-risk process and the counting process,
respectively, where I(·) is the indicator function. Zi denotes a p-dimensional covariate for subject i, and here we focus our
attention on time-independent covariate. Let τ denote the end time for the study.

We assume that T̃i arises from the following proportional hazards model (Cox, 1972):

λ(t|Zi) = λ0(t) exp
{
Z ′

iβ
}
, (1)

where λ0(t) is the unspecified baseline hazard function, andβ is a p-dimensional regression parameter of primary interest. In
the cohort studies that covariate information can be assembled for each individual, the following partial likelihood function
is widely used for the inference of β (Cox, 1972; Andersen and Gill, 1982):

LF (β) =

N∏
i=1

[
exp

{
Z ′

iβ
}∑

l∈R(Ti)
exp

{
Z ′

l β
}]∆i

, (2)

where R(t) = {i : Ti ≥ t, i = 1, . . . ,N} is the risk set.
In the case-cohort studies, the covariate is not completely available for each individual. A subcohort is selected from the

full cohort by simple random sampling. The subjects from the subcohort and the additional cases outside the subcohort
constitute the case-cohort sample, only for which themeasurements of covariate are assembled. Let C̃ and C be the index set
of the subcohort and the case-cohort sample, respectively. Let ñ and n be the sample size of C̃ and C, respectively. Therefore,
the observed data structure for such a case-cohort design can be summarized as follows: (Ti, ∆i, Zi) for i ∈ C, otherwise
(Ti, ∆i).

Since the covariates are observed incompletely under the case-cohort design, the likelihood function in (2) cannot be
calculated. Prentice (1986) proposed the following pseudo-likelihood function:

LP (β) =

∏
i∈C

[
exp

{
Z ′

iβ
}∑

l∈R̃(Ti)
exp

{
Z ′

l β
}]∆i

,

where the risk set R̃(t) =
{
i : Ti ≥ t, i ∈ C̃ ∪ D(t)

}
withD(t) = {i : Ni(t) ̸= Ni(t−), i = 1, . . . ,N}. Notice thatD(t) is empty

unless a failure occurs at time t . The corresponding log-likelihood function takes the following form:

lP (β) =

∑
i∈C

∆i

⎡⎣Z ′

iβ − log

⎧⎨⎩ ∑
l∈R̃(Ti)

exp(Z ′

l β)

⎫⎬⎭
⎤⎦ . (3)
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