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h i g h l i g h t s

• A new sufficient dimension reduction method based on kernel canonical functions.
• This new method is distribution free and highly scalable.
• We give theoretical proof of the sufficient dimension reduction property.
• We present efficient algorithms and discuss the choice of loss function.
• Extensive experiments demonstrate its advantage over existing approaches.
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a b s t r a c t

A new kernel dimension reduction (KDR) method based on the gradient space of canonical
functions is proposed for sufficient dimension reduction (SDR). Similar to existing KDR
methods, this new method achieves SDR for arbitrary distributions, but with more
flexibility and improved computational efficiency. The choice of loss function in cross-
validation is discussed, and a two-stage screening procedure is proposed. Empirical
evidence shows that the new method yields favorable performance, both in terms of
accuracy and scalability, especially for large andmore challenging datasets compared with
other distribution-free SDR methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

In the era of big data, supervised dimension reduction serves as an invaluable tool to make the best use of the high- 2

dimensional datasets by casting them onto some lower dimensional manifolds with minimum loss of relevant information. 3

The task is to seek a low-dimensional embedding Z ∈ Rd of some high-dimensional vector X ∈ Rp using information from 4

some auxiliary variable Y , which in most cases is a Rq vector but can also be more abstract objects such as graphs, texts, 5

etc. Popular methods to achieve this task include canonical correlation analysis, partial least square, and LASSO, among 6

others. 7

One particular research direction is the so-called sufficient dimension reduction (SDR), where a low-dimension 8

representation Z of X that fully captures the conditional distribution of Y given X , i.e., P(Y |Z) = P(Y |X), is identified. For 9
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computational reasons, Z is usually restricted to linear combinations of X , while not prohibiting other forms (Wang et al.,1

2014). Since the seminal paper of sliced inverse regression (SIR) (Li, 1991), SDR has been extensively studied (Cook and2

Ni, 2005; Li and Dong, 2009; Ma and Zhu, 2013). In current studies, SDR is approached in three ways: inverse regression,3

forward regression and joint approach. Inverse regression focuses on the distribution of X given Y , and popular methods4

in this category include SIR (Li, 1991), sliced average variance estimator (Cook and Weisberg, 1991) and principal Hessian5

direction (Li, 1992). While these methods are computationally cheap, they depend on such strong assumptions as elliptical6

distribution of X . Average derivative estimation (Härdle and Stoker, 1989; Samarov, 1993), minimum average variance7

estimation (Xia et al., 2002) and sliced regression (Wang and Xia, 2008) are examples of forward regression, which focuses8

on the distribution of Y , given X . They are free of restrictive probability assumptions, yet suffer from heavy computational9

burden as a result of the nonparametric estimation procedures involved. The joint approach, including methods such as10

those based on Kullback–Leibler divergence (Yin and Cook, 2005; Yin et al., 2008), mutual information (MI) (Suzuki and11

Sugiyama, 2013; Tangkaratt et al., 2015), Fourier analysis (Zhu and Zeng, 2006), integral transforms (Zeng and Zhu, 2010),12

or canonical dependency (Fung et al., 2002; Karasuyama and Sugiyama, 2012), all focus on exploiting the joint distribution13

of (X, Y ).14

The pioneering works of Fukumizu have produced kernel dimension reduction (KDR) techniques, such as trace-based15

kernel dimension reduction (tKDR) (Fukumizu et al., 2004, 2009) and gradient-based kernel dimension reduction (gKDR)16

(Fukumizu and Leng, 2012). Among other joint approaches, these techniques present solutions to the problem of SDR by17

embedding probability distributions in the reproducing kernel Hilbert space (RKHS) and exploiting the cross-covariance18

operators between RKHSs. These methods are also characterized as distribution-free. Apart from its theoretical grounding,19

KDR also showed very competitive empirical performance. Still, its applications are limited by the heavy computational20

burden involved, especially for tKDR. Although gKDR ismuchmore efficient than tKDR, it suffers from degenerated accuracy21

on many benchmark problems when compared to tKDR.22

In this work, we describe a novel kernel dimension reductionmethod that improves upon the accuracy of tKDR, while, at23

the same time, consuming less computational resources than that of gKDR. Our approach is based on kernel canonical-24

correlation analysis, and, as such, it is termed as ccaKDR. We prove that the central space is equivalent to the space25

spanned by the derivative of the canonical functions with nonvanishing eigenvalues in RKHS under mild conditions, and26

a more scalable linear scaling approximation algorithm is presented. We also present a two-stage screening procedure and27

discuss the choice of loss function, both topics of pragmatic importance. Empirical evidence reveals that better accuracy and28

scalability can be expected from ccaKDR compared with other distribution-free alternatives.29

The paper is organized as follows. In Section 2,we briefly review the technical tools required, propose ccaKDR and present30

its theoretical justifications, followed by a discussion of relevant issues. In Section 3, we conduct numerical experiments on31

both synthetic and real-world data to substantiate the paper. Concluding remarks are given in Section 4. MATLAB code for32

the algorithms and sample data can be found on the authors’ website.33

2. CCA-based kernel dimension reduction34

2.1. Background35

In this section, we briefly review the mathematical tools needed to derive and compute the proposed ccaKDR. We use36

capital letters X, Y , . . . to denote random variables, bold font capital letters A, B, . . . to denote matrices, and use notation37

[n] for the set {1, . . . , n}.38

Reproducing kernel Hilbert space (RKHS) has been established as a versatile tool in machine learning, especially for nonlinear39

problems, with themost prominent examples including support vectormachines in classification and regression.We briefly40

review the basic concepts here. If we denoteΩ of some set, then we call a real-valued symmetric function κ(·, ·) defined on41

Ω×Ω a positive definite kernel if it satisfies
n

i,j=1 cicjκ(xi, xj) ≥ 0 for any {ci}ni=1 ∈ R and {xi}ni=1 ∈ Ω with any n ≥ 0, and42

wewill hereinafter simply refer to it as a kernel. For such a kernel onΩ , Aronszajn (1950) established that there is a unique43

Hilbert space H , with its inner product ⟨·, ·⟩ induced by κ , consisting of functions on Ω such that (i) κ(·, x) ∈ H , (ii) the44

linear hull of {κ(·, x)|x ∈ Ω} is dense in H , and (iii) for any x ∈ Ω and f ∈ H, ⟨f , κ(·, x)⟩H = f (x). We note that (iii) is the45

famous reproducing property and, thus the name reproducing kernel Hilbert space. The representer theorem (Kimeldorf and46

Wahba, 1970) serves as the foundation of almost all kernelmethods, and it basically states that theminimizer of functions in47

H of some empirical risk function plus regularization admits the form of a linear combination of κ(·, xi) based on empirical48

samples {xi}ni . This equates the optimization on an infinite dimensional search space H to a finite dimensional search49

space Rn.50

Kernel embedding and cross-covariance operators are theoretical tools developed in recent years for kernel techniques51

involved with distributions for many statistical problems. Let (X,BX, µX ) be the probability measure space for random52

variable X defined on X and (κX,HX) the measurable kernel and associated RKHS, respectively. A kernel embedding of53

µX with respect to κX is defined as EµX [κ(·, X)] ∈ HX, and if such embedding map from the space of all probability54

distributions defined on X to HX is injective, then we call the kernel characteristic. That is to say for characteristic kernels55

Eµ[κ(·, X)] = Eν[κ(·, X)] implies µ = ν. This is a generalization of the characteristic functions on probability measures,56

as defined on Euclidean spaces, and popular examples of characteristic kernels include Gaussian kernel and Laplace kernel.57
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