
Computer Languages, Systems & Structures 50 (2017) 82–107 

Contents lists available at ScienceDirect 

Computer Languages, Systems & Structures 

journal homepage: www.elsevier.com/locate/cl 

Atomistic Galois insertions for flow sensitive integrity 

Flemming Nielson 

∗, Hanne Riis Nielson 

DTU Compute, Kongens Lyngby, Denmark 

a r t i c l e i n f o 

Article history: 

Received 12 January 2017 

Revised 8 May 2017 

Accepted 13 June 2017 

Available online 23 June 2017 

Keywords: 

Abstract interpretation 

Security policy 

Information flow 

a b s t r a c t 

Several program verification techniques assist in showing that software adheres to the re- 

quired security policies. Such policies may be sensitive to the flow of execution and the 

verification may be supported by combinations of type systems and Hoare logics. How- 

ever, this requires user assistance and to obtain full automation we shall explore the over- 

approximating nature of static analysis. 

We demonstrate that the use of atomistic Galois insertions constitutes a stable framework 

in which to obtain sound and fully automatic enforcement of flow sensitive integrity. The 

framework is illustrated on a concurrent language with local storage and polyadic syn- 

chronous communication. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Trustworthy software requires adherence to advanced security policies. Policies are often formulated in terms of principals 

(or users) and the variables (or data) that they access; accesses are often divided into uses (or reads) and influences (or 

writes) [19] . 

In access control an access is either granted or denied. Restrictions may be expressed in terms of the names of the 

principals and variables or in terms of the security classifications of the principals and variables [6,8] . 

In information flow [11,17,18,22,28,43] it is further required that even if the use of a variable is granted it may not later 

be used in a way that violates the policy; similarly, even if the influence of a variable is granted this may not depend on 

previous data that violates the policy. Enforcement of information flow policies often takes the form of type systems [40] , 

and a well-known example is that of the Decentralised Label Model [28,29] . 

Sometimes the applicable policy is sensitive to the flow of execution: for influences we are concerned about how we 

reached the point of interest, and for uses we are concerned about how we continue the execution. To express these flow 

sensitive policies requires the ability to express conditions on the current values of variables. Indeed, the need for content 

dependent security policies is argued in [27] to be a main challenge in the context of ensuring the security of avionics 

software [13,26,35] . 

To check that software adheres to flow sensitive security policies requires methods and techniques from program ver- 

ification. Generally one would need to characterise values of variables at various program points in order to determine 

adherence to the policy. Program logics such as Hoare Logic [1,3,4,21,37,41] are fully capable of this even in the presence of 

concurrent and communicating programs. It is also possible to extend program logics to take security policies into account 

and to express that programs conform to the policies [32,33] . 

∗ Corresponding author. 

E-mail addresses: fnie@dtu.dk (F. Nielson), hrni@dtu.dk (H. Riis Nielson). 

http://dx.doi.org/10.1016/j.cl.2017.06.004 

1477-8424/© 2017 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.cl.2017.06.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2017.06.004&domain=pdf
mailto:fnie@dtu.dk
mailto:hrni@dtu.dk
http://dx.doi.org/10.1016/j.cl.2017.06.004


F. Nielson, H. Riis Nielson / Computer Languages, Systems & Structures 50 (2017) 82–107 83 

Fig. 1. Atomistic Galois insertions in our development. 

Fig. 2. The processes and channels of the multiplexer example. 

However, it is likely that software development already employs powerful static analyses [31] for ensuring the function- 

ality of the code. A substantial use of abstract interpretation for avionics software is presented in [7] and an example of the 

use of abstract interpretation for large scale analysis of mobile code is given in [42] . Static analysis computes sound approx- 

imations to the values that variables may have at various program points. This is often expressed as over-approximating 

fixed-points in a complete lattice of properties of states and many techniques exist for developing sound and reasonably 

precise analyses with a tractable complexity [14–16] , including the use of widening. 

What is needed is to find a way to express the security policies of interest so that they exploit the static analyses. In 

[25] it is shown that abstract interpretation based approaches are valuable also when dealing with declassification accord- 

ing to a number of dimensions (who, what, where, when) [36] . In [12] abstract interpretation of sets of pairs of program 

runs is used to deal with declassification according to the dimensions of [36] . An interesting use of statistical learning to 

understanding the security implications of the massive amounts of output produced by static analysis is given in [38] and 

the use of static analysis for enforcing context-dependent security policies is developed in [9] . A first attempt at dealing 

with time-dependent information flow policies is considered in [34] where the policies are translated to Timed Automata 

that are model checked. 

In our approach the main challenge therefore is to find a way to allow elements of complete lattices to be used in flow 

sensitive security policies in such a way that it becomes algorithmically decidable whether or not a program adheres to the 

security policy. In order to pose as few conditions as possible on the static analyses used for analysing programs we shall be 

using two (likely) different com plete lattices: an analysis lattice for the construction of sound approximations to the values 

that variables may have at program points, and a policy lattice for the properties used to determine the applicability of the 

flow sensitive properties. 

Our development, illustrated in Fig. 1 , then hinges on ensuring that: 

• the analysis lattice is an atomistic complete lattice and there is an atomistic Galois insertion from the (collecting) seman- 

tics to the analysis lattice, 
• the policy lattice is an atomistic complete lattice and there is an atomistic Galois insertion from the analysis lattice to the 

policy lattice, and 

• the policy lattice has only finitely many atoms (whereas the analysis lattice is allowed to be infinite and even contain 

infinite chains). 

In this paper we perform the development for a programming language with concurrent processes, local storage and 

polyadic synchronous communication . However, the framework developed is much more widely applicable and implemen- 

tations will be fully automatic. 

We use an illustrative example taken from our work with Airbus: a component of an avionics gateway [26] that essen- 

tially amounts to a multiplexer as shown in Fig. 2 . The multiplexer merges data from different sources and forwards it over 

a joint channel to the demultiplexer that will split the data so as to reach different targets. The sources and targets have 

different security policies and the challenge is to express and enforce the policy of the merged data as it will depend on 

information within the data itself. 

Overview. The language and its representation as a family of program graphs (one for each process) is covered in Section 2 . 

We develop the necessary notion of atomistic Galois insertion in Section 3 and apply it to our program graphs. The use of 

atomistic Galois insertions facilitates a precise treatment of the content dependent information flow policies introduced in 

Section 4 . The enforcement mechanism developed in Section 5 uses the results of the abstract interpretation and amounts 

to requiring the satisfaction of a system of constraints. We conclude with a soundness theorem. In Appendix A we provide 

further details on how one might be building the abstract domains in an independent attribute approach; however, we 

would like to stress that our theoretical results are valid in general. 



Download English Version:

https://daneshyari.com/en/article/4949413

Download Persian Version:

https://daneshyari.com/article/4949413

Daneshyari.com

https://daneshyari.com/en/article/4949413
https://daneshyari.com/article/4949413
https://daneshyari.com

