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a b s t r a c t

Minimum spanning cactus andminimum spanning cactus extension problems are studied.
Both problems areNP-Complete.Wepresent an approximation algorithm for theminimum
spanning cactus extension of a forest, a hardness of approximation result of the general
minimum spanning cactus problem. For theminimum spanning cactus extension problem,
Kabadi and Punnen presented polynomial time algorithms for extending quasi-stars, span-
ning trees (Kabadi and Punnen, 2013). We present improved analysis of their algorithms in
both cases.We further show that their algorithm for the extension of spanning trees can be
generalized to extend any connected spanning partial cactus. As a requirement of improved
implementation, we have presented a new O(n3) algorithm to compute all minimum cost
monotone paths with respect to a spanning tree.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

An undirected graph is called a partial cactus if every edge of the graph is contained in at most one cycle. A cactus is a
connected bridgeless partial cactus [10]. This means that every edge is contained in exactly one cycle in a cactus. Consider a
graph, G = (V , E). A subgraph H = (V , EH ) of G is a spanning cactus of G if H is a cactus. Let ce be the cost of an edge e ∈ E.
For a spanning cactus H = (V , EH ) of G, the cost of the spanning cactus H , denoted by cH , is defined by

∑
e∈EH

ce. Minimum
Spanning Cactus Problem (MSCP) is to compute a spanning cactus of minimum cost.

If H = (V , EH ) is any spanning partial cactus of G = (V , E), one may try to add edges in H from E \ EH to get a spanning
cactus H̄ = (V , EH̄ ) of G. If such a spanning cactus exists then we say H is cactus extendable in G and H̄ is called a cactus
extension of H . It is easy to observe that a cactus extension may not exist for some spanning partial cacti. The optimization
version of the problem finds H̄ so as to minimize cH̄ . This is known as theMinimum Cactus Extension Problem (MCEP).

Minimum Spanning Tree (MST) of a graph is a minimum connected substructure of a graph. In network applications, it
is often important to maintain such substructures. However, an MST substructure has an edge connectivity one; hence not
reliable. On the other hand, a cactus substructure has edge connectivity two; therefore more reliable. For this reason,MSCP,
including MCEP, find applications in the design of reliable communication and transportation networks [10,17]. This motivates
the design of more efficient algorithms for these problems. The problems also find applications in genome comparison [6],
representation of cuts in a graph [7–9], traffic estimation [13,20]. The reader may refer to [3–5,12,19] for some basic graph
problems on a cactus graph.

The directed version of MSCP is studied in [15]. It is shown that the directed version is NP-Complete. Further, if the edge
costs satisfy the triangle inequality, the problem becomes equivalent to the asymmetric traveling salesman problem.

The undirected version of the problem, defined above, is studied in [10]. It is proved that the problem is NP-Complete.
Further, it is shown that if the edge costs satisfy the triangle inequality then the problem becomes equivalent to the traveling
salesman problem, and both of them have the same approximation hardness.
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MCEP becomes equivalent to MSCP when the given spanning subgraph H = (V , EH ) contains no edge. This implies MCEP
is NP-Complete [10]. Kabadi and Punnen present a series of results mentioned below [10]. They provide a polynomial time
algorithm to test ifH is cactus extendable in a complete graph. Further, they prove that ifH is a spanning tree then it is cactus
extendable if and only if it has at least one vertex of even degree. Polynomial time algorithms are also presented for MCEP
when H are paths, quasi-stars or cactus extendable spanning trees. For paths and quasi-stars the algorithms take O(n2) and
O(n4) time, respectively. For spanning trees, it is argued that the algorithm works in polynomial time; but no detailed time
complexity analysis is provided.

In this paper, we present a new analysis of the kabadi–punnenMCEP algorithmon a quasi-star.We show that the algorithm
works in O(n3) time, reducing the time complexity from O(n4) as claimed in [10]. An analysis of the kabadi–punnen MCEP
algorithm for cactus extension of a spanning tree has been considered. We show that the analysis technique used by Kabadi
et al. actually results in O(n5) time complexity. Further, we present a way to implement the algorithm in O(n3) time. For the
new implementation, we need all minimum cost monotone paths between any two vertices with respect to a spanning tree.
We propose a new efficient algorithm to compute all these paths in O(n3) time. Next we show that the kabadi–punnen algorithm
can be generalized to obtain a cactus extension of any arbitrary connected spanning cactus in O(n3) time.

AlthoughMCEP on a tree can be solved in polynomial time, it seems thatMCEP for a forest cannot be solved in polynomial
time.We present an approximation algorithm for the problemwith a ratio error two if the edge costs satisfy the triangle inequality.
It has been shown in [10] that for a graph satisfying the triangle inequality, MSCP has the same approximation hardness as
the traveling salesman problem satisfying the triangle inequality. However, no result is known for the approximation of the
general MSCP. In this paper, we show that if P ̸= NP, there exists no approximation algorithm for the general MSCP with ratio
error bound r(≥ 1).

In Section 2, we present briefly kabadi–punnen MCEP algorithms for paths, quasi-stars, and spanning trees. Section 3
includes the improved time complexity analysis of the kabadi–punnen MCEP algorithm for a quasi-star. In Section 4, we
present a simple O(n3) time algorithm to compute all minimum cost monotone paths with respect to a spanning tree.
Section 5 presents the implementation of the kabadi–punnen algorithm for an extension of a spanning tree in O(n3) time. In
Section 6, we present a way to extend this algorithm to solve MCEP for an extension of a connected partial spanning cactus.
Section 7 presents the approximation algorithm for the extension of a forest. The hardness of approximation of MSCP has
been studied in Section 8. Finally, Section 9 presents the conclusion and scopes for future studies.

2. kabadi–punnen algorithms

In this section we present the kabadi–punnen MCEP algorithms for extensions of Hamiltonian paths, quasi-stars, and
cactus extendable spanning trees.We use some definitions from [10] for description of the algorithm. A vertex hwith degree
three or more in a tree T is called a head of a tree T if T \ {h} has at most one component, called the body of T at h, that is
neither a path nor an isolated vertex. Let T 0

h denote the body of T at h. T \ T 0
h defines a subtree of T , called the tentacle system,

TSh, at h. A path from h to a pendant vertex in TSh is called a tentacle at h. This tentacle system is a tree inwhich there is exactly
one head vertex. Such a tree, called quasi-star, is homeomorphic to a star. Fig. 1 shows a quasi-star with head vertex h.

Without any loss of generality we assume that the given graph G = (V , E) is a complete graph Kn of n vertices. First we
assume that H is a path of all vertices in Kn. The algorithm for an extension of the path H uses the notion of monotone path
introduced in [1]. Let Pa,b = Pb,a = a− u1 − u2....un−2 − b be a Hamiltonian path in Kn. Amonotone pathwith respect to Pa,b
is a path Πa,b = a − uΠ1 − uΠ2 .....uΠk − b, where 2 < Πi + 1 < Πi+1 < n − 2, for i = 1, 2, . . . .., k − 1. The cost of the
monotone path Πa,b is the sum of the costs of the edges on the path. The minimum cost monotone path with respect to the
path Pa,b, denoted by βPa,b (a, b), can be computed in O(n2) time [1]. It is straightforward to observe that Pa,b ∪ βPa,b (a, b) is
the required minimum spanning cactus extension [10]. So the MCEP on a Hamiltonian path can be solved in O(n2) time.

2.1. Extension of quasi-star

The idea has been extended to solve MCEP on a quasi-star [10]. Consider a quasi-star T of n vertices as in Fig. 1. Let S be
the set of all odd degree vertices in T . Note that S contains the pendant vertices p1, p2, . . . .pk. h ∈ S if its degree is odd. The
algorithm for MCEP on the quasi-star T in Kn, given by Kabadi et al., constructs a complete graph G′ of the vertices in S. Let
βT (i, j) be the minimum cost monotone path with respect to the unique path between i and j in T . The cost of the edge (i, j)
in G′ is the cost of βT (i, j), the minimum cost monotone path from i to j. Note that the cost of βT (h, j) = ∞, if (h, j) ∈ T .
Let M∗ be the minimum cost perfect matching of the vertices in G′. They proved that H̄ = T ∪ {βT (u, v)|(u, v) ∈ M∗} is the
minimum cost cactus extension of T in Kn [10].

They also proved that their algorithm takes O(n4) time. The computation of cost of an edge (i, j) in G′ needs computation
of minimum cost monotone path βT (i, j); therefore can be performed in O(n2) time [1]. There can be O(n2) edges in G′ in the
worst case. So, the construction of G′ takes O(n4) time. Further, the computation of the minimum cost perfect matching in
G′ takes O(n3) time [14]. Total time required, as claimed by Kabadi et al., is O(n4).
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