Note

The maximum atom-bond connectivity index for graphs with edge-connectivity one

Qing Cui, Qiuping Qian, Lingping Zhong*
Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China

A R TICLE INFO

Article history:

Received 11 October 2016
Received in revised form 23 November 2016
Accepted 13 December 2016
Available online xxxx

Keywords:

Atom-bond connectivity index
Edge-connectivity

Abstract

The atom-bond connectivity $(A B C)$ index of a graph G is defined as the sum of the weights $\sqrt{\frac{d(u)+d(v)-2}{d(u) d(v)}}$ of all edges $u v$ of G, where $d(u)$ denotes the degree of a vertex u in G. In this short note, we determine the maximum $A B C$ index for graphs with edge-connectivity one and characterize the corresponding extremal graphs. This answers a recent question proposed by Zhang et al. (2016).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Molecular descriptors are playing a significant role in chemistry, pharmacology, etc. Among them, topological indices have a prominent place. Topological indices are numbers associated with chemical structures derived from their hydrogendepleted graphs as a tool for compact and effective description of structural formulas which are used to study and predict the structure-property correlations of organic compounds. There are lots of topological indices which have found some applications in theoretical chemistry, especially in QSPR/QSAR studies (for example, see [20, pages 34-95] and [21, pages 105-140]).

Let G be a simple graph with vertex set $V(G)$ and edge set $E(G)$. The atom-bond connectivity (ABC) index was introduced by Estrada et al. [13] in 1998. This index is defined as

$$
A B C(G)=\sum_{u v \in E(G)} \sqrt{\frac{d(u)+d(v)-2}{d(u) d(v)}}
$$

where $d(u)$ denotes the degree of a vertex u of G. It displays an excellent correlation with the heat of formation of alkanes [13], and a basically topological approach was developed on the basis of the $A B C$ index to explain the differences in the energy of linear and branched alkanes both qualitatively and quantitatively [12].

The mathematical properties of the $A B C$ index have been studied extensively. Furtula, Graovac and Vukičević [14] determined the maximum $A B C$ index for trees and the maximum and minimum $A B C$ indices for chemical trees. Xing, Zhou and Du [23] found the maximum $A B C$ indices for trees with a perfect matching or given maximum degree, and characterized the corresponding extremal trees. See [1-11,15-19,22,25] for more information of this index.

Recently, Zhang et al. [24] considered the maximum $A B C$ indices for connected graphs with some given graph parameters such as independence number, number of pendent vertices, edge-connectivity and chromatic number. Particularly, they

[^0]Table 1
The $A B C$ indices of K_{n}^{*} and all possible graphs G^{*} (for $6 \leq n \leq 12$).

n	n_{1}	n_{2}	$A B C\left(G^{*}\right)$	$A B C\left(K_{n}^{*}\right)$	n	n_{1}	n_{2}	$A B C\left(G^{*}\right)$	$A B C\left(K_{n}^{*}\right)$
6	3	3	4.9093	6.9350		3	8	16.4987	
7	3	4	6.7033	9.3083	11	4	7	15.4797	20.8602
8	3	5	8.7944	11.9021		5	6	14.9839	
	4	4	8.4854			3	9	19.4772	
9	3	6	11.1404	14.7004	12	4	8	18.2605	24.2014
	4	5	10.5688			5	7	17.5515	
	3	7	13.7148			6	6	17.3180	
10	4	6	12.9093	17.6901					
	5	5	12.6470						

determined the maximum $A B C$ index for graphs with edge-connectivity $k(k \geq 2)$ and characterized the corresponding extremal graphs. It was suggested in [24] that the extremal graphs with the maximum $A B C$ index for graphs with edgeconnectivity 1 might have the similar structure as in the general case (i.e., $k \geq 2$). In this short note, we give an affirmative answer to this question.

2. Main result

In this section, we prove the main result of this paper. First, we list the following two lemmas which will be used in our proof. The first lemma was proved by Chen and Guo [2] (see also [4]).

Lemma 2.1. Let G be a graph with n vertices. If x and y are two nonadjacent vertices in G, then $A B C(G) \leq A B C(G+x y)$ with equality if and only if both x and y are isolated vertices of G. As a consequence, we have $A B C(G) \leq A B C\left(K_{n}\right)$ with equality if and only if $G \cong K_{n}$, where K_{n} denotes the complete graph with n vertices.

The second lemma was shown in [23,22].
Lemma 2.2. Let $f(x, y)=\sqrt{\frac{x+y-2}{x y}}$ with $x, y \geq 1$, then $f(x, y)$ is decreasing with respect to x for any fixed $y \geq 2$.
For $n \geq 3$, let K_{n}^{*} be the graph on n vertices obtained by attaching a pendent vertex to exactly one vertex of K_{n-1}. It is easy to see that K_{n}^{*} has edge-connectivity 1 . We now prove the main result of this paper by applying the similar idea as in [24].

Theorem 2.3. Let G be a graph with $n \geq 3$ vertices and edge-connectivity 1 . Then

$$
A B C(G) \leq \sqrt{\frac{n-2}{n-1}}+\frac{n-3}{2} \sqrt{2 n-6}+(n-2) \sqrt{\frac{2 n-5}{(n-1)(n-2)}}
$$

with equality if and only if $G \cong K_{n}^{*}$.
Proof. Suppose G^{*} is the graph with the maximum $A B C$ index among all graphs with $n \geq 3$ vertices and edge-connectivity 1.

First, suppose G^{*} contains a vertex of degree 1 , say v. Let $G^{\prime}:=G^{*}-\{v\}$. Then by Lemma 2.1 and by the assumption of G^{*}, we see that G^{\prime} is the complete graph on $n-1$ vertices; for otherwise, there must exist two nonadjacent vertices x, y in G^{\prime} such that the graph $G^{*}+\{x y\}$ has edge-connectivity 1 and $A B C\left(G^{*}+\{x y\}\right)>A B C\left(G^{*}\right)$, a contradiction. This implies that $G^{*} \cong K_{n}^{*}$, and hence the assertion holds.

So we may assume that every vertex in G^{*} has degree at least 2 . Let e be a cut-edge in G^{*}. Then $G^{*}-\{e\}$ has exactly two components, say G_{1} and G_{2}. By Lemma 2.1 and by the assumption of G^{*}, we have both G_{1} and G_{2} as complete graphs. Let n_{i} be the number of vertices in G_{i} (for $i=1,2$), then $n=n_{1}+n_{2}$. Without loss of generality, we may assume $n_{2} \geq n_{1}$. Since G^{*} has minimum degree at least 2 , we have $n_{2} \geq n_{1} \geq 3$ and hence $n \geq 6$.

For each $6 \leq n \leq 12$, there are only a few possible graphs satisfying the conditions that both components G_{1} and G_{2} are complete graphs and $n_{2} \geq n_{1} \geq 3$. So it is easy to check that the assertion holds for $6 \leq n \leq 12$ through direct calculations (see Table 1). Therefore we may further assume that $n \geq 13$.

Since $n_{2} \geq n_{1} \geq 3$ (and $n \geq 13$), by Lemma 2.2, we have

$$
\begin{aligned}
A B C\left(K_{n}^{*}\right) & =f(1, n-1)+(n-2) f(n-1, n-2)+\frac{(n-2)(n-3)}{2} f(n-2, n-2) \\
& \geq f(1, n-1)+(n-2) f(n-1, n-1)+\frac{(n-2)(n-3)}{2} f(n-1, n-1) \\
& =f(1, n-1)+\frac{(n-1)(n-2)}{2} f(n-1, n-1) \\
& =\sqrt{\frac{n-2}{n-1}}+\frac{(n-2)^{\frac{3}{2}}}{\sqrt{2}}
\end{aligned}
$$

https://daneshyari.com/en/article/4949716

Download Persian Version:

https://daneshyari.com/article/4949716

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: cui@nuaa.edu.cn (Q. Cui), qqp0914@163.com (Q. Qian), zhong@nuaa.edu.cn (L. Zhong).
 http://dx.doi.org/10.1016/j.dam.2016.12.011
 0166-218X/© 2016 Elsevier B.V. All rights reserved.

