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a b s t r a c t

In the Train Marshalling Problem (TMP) the cars of a train having different destinations
have to be reordered in such a way that all the cars with the same destination appear
consecutively. To this aim the cars are first shunted on k auxiliary rails, then the sequences
of cars present on the different rails are reconnected one after the other to form a new train.
The TMP is the problem of minimizing the number k of auxiliary rails needed to obtain a
trainwith the required property. The TMP is an NP-hard problem. Herewe present an exact
dynamic programming algorithm for the TMP based on the inclusion–exclusion principle.
The algorithm has polynomial space complexity and time complexity that is polynomial in
the number of cars, exponential in the number of destinations. This shows that the TMP is
fixed parameter tractable with the number of destinations as parameter.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In the Train Marshalling Problem (TMP) a train T = (a1, a2, . . . , an) with n cars having t different destinations is
given. The order of the cars of the train can be modified by means of k auxiliary rails (or tracks) as follows. First the n cars
a1, a2, . . . , an are considered one by one in their initial order and each car is moved to one of the k auxiliary rails and placed
behind the cars already on the rail. This process creates k sequences of cars, one for each rail. Then a new train is created
by reconnecting these sequences in a single one by sequencing the cars on the first rail in their actual order followed by
the cars on the second rail and so on, ending with the cars on the kth rail. The TMP is the problem of finding the minimum
number k of auxiliary rails needed to rearrange the train in such a way that all the cars with the same destination appear
consecutively. An order of the cars that satisfies this conditionwill be called a TM-order. The decision version of the problem
(DTMP) is the problem of deciding if, given a natural number k, a TM-order of a train T can be obtained by using at most k
auxiliary rails.

The TMP was originally proposed in [15] by Zhu and Zhu who studied some polynomial classes of the problem. In [7]
Dahlhaus et al. showed that the DTMP is NP-complete and, as a consequence, the TMP is an NP-hard problem. They also
proved that the optimal value of the TMP is upperbounded by the value

L(n, t) = min{t, ⌈n/4 + 1/2⌉}. (1)

A 2-approximation algorithm for the TMP based on an interval graph coloring approach has been proposed by Dahlhaus
et al. in [8]. The question if the TMP is a fixed parameter tractable problem has been addressed by Brueggeman et al. in [6].
In this paper the authors describe a dynamic programming procedure for the DTMP that requires time O(2O(k)poly(n)) and
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space O(n2k28k), thus polynomial for each fixed value of the parameter k. However, the proof of correctness of the algorithm
contains a bug which, to the authors’ knowledge, has not been fixed yet [9].

In this paperwe present an exact algorithm that solves a graph theoreticalmodel of the DTMP. The algorithm is a dynamic
programming procedure based on the principle of inclusion–exclusion and has time complexity O(nkt22t) and polynomial
space complexity O(nkt). This procedure can be easily adopted to solve the TMP by binary search in O(nt22tL log2 L)where
L = L(n, t) is the upperbound given in (1). In particular, this shows that the TMP is fixed parameter tractable with respect
the number t of different destinations. Because of the exponential factor 2t in the time complexity, the procedure can be
reasonably used to solve instances with a number of destinations t up to 30. It remains an open problem if the DTMP shows
the stronger property to be fixed parameter tractable even with respect to the number k of auxiliary rails.

The TMP belongs to a wide class of combinatorial problems which arise in the optimization of the train classification
processes. These problems usually require to rearrange the cars of a train (or of a set of trains) to sequence them in an
assigned order. So, differently from the TMP, the final order of the cars is usually an input of the problem. The goal is reached
by partitioning the cars of the train on a given set of auxiliary tracks and then performing a sequence of so called roll-in
operations, where each roll-in operation takes the cars on a track and suitably routes them on the other tracks. The main
objective is either the minimization of the number of roll-in operations or the number of cars globally involved in these
operations. Furthermore, scheduling aspects can also affect the problem. For a detailed description of the train classification
problems see for instance [10,11] and the references therein.

We remind that the inclusion–exclusion principle has been successfully applied in combinatorial optimization to solve
classical NP-problems, in particular graph theory problems. Initially, Karp [12] used this approach to solve the hamiltonian
path problem, the bin packing problem and some sequencing problems. Later on, other combinatorial problems have been
addressed by the inclusion–exclusion approach in [1–4]. In particular, Björklund et al. [5] have proposed a general way to
solve a class of set partitioning problems including chromatic number, dominating number, maximum k-cut and list color-
ing.

The remainder of the paper is organized as follows. In Section 2 we formally define the TMP. In Section 3 we introduce a
graph theoretical model for the DTMP suitable to be solved by the inclusion–exclusion principle. In Section 4we present two
dynamic programming procedures that solve the DTMP and the TMP, respectively. Some conclusions are drawn in Section 5.

Notation. Wewill use the following notation. For each n ∈ N, Nn = {1, . . . , n} denotes the set of integers in between 1 and
n and for i, j ∈ N, i < j, we denote by [i, j] the set of integers r with i ≤ r ≤ j. Given a sequence α of length n and a subset
S ⊂ Nn we denote by α[S] the sequence obtained from α by removing the elements in positions in Nn \ S. If S = {i}, we also
write α[S] = α[i] = αi. Given two sequences α and β of lengthm and n, respectively, we denote by α · β the concatenation
of α and β , that is the sequence (α1, . . . , αm, β1, . . . , βn). Finally, any (total) order of a set Nn is represented by the sequence
τ of length nwhere τ [i], i = 1, . . . , n, denotes the ith element in the order.

2. Problem formulation

An instance of the TMP consists in a triple (n, t,D) where n is the number of cars of the train, t is the number of
destinations andD is a partition ofNn in subsetsD(j), j ∈ Nt . Each setD(j) contains the indices of the cars having destination
j. For the sake of simplicity, in the following we identify the cars of the train with their index. In this way the original order
of the cars corresponds to the sequence (1, 2, . . . , n).

Definition 1. An order τ of Nn is said a TM-order for the instance (n, t,D) if the elements of each set D(j), j ∈ Nt , appear
consecutively in τ , i.e., τ [r], τ [s] ∈ D(j) for some 1 ≤ r < s ≤ n implies τ [i] ∈ D(j) for every r ≤ i ≤ s.

To formally define the TMP we observe that the train α = (1, 2, . . . , n) can be reordered by means of k auxiliary tracks
to obtain a TM-train if and only if there exists a map φ : Nn → Nk such that, setting φ−1(r) = {i ∈ Nn : φ(i) = r} for each
r ∈ Nk, the sequence

τφ = α[φ−1(1)] · α[φ−1(2)] · · ·α[φ−1(k)]

is a TM-order of Nn. In this case the map φ is said a k-TM-solution, or briefly a k-solution, of the TMP instance. Each set
φ−1(r) denotes the cars that are moved on the rth track. According to α[φ−1(r)], these cars are sequenced on track r for
increasing indices. Let us denote by πφ the order of Nt in which the t destinations appear in τφ , i.e., such that for each j ∈ Nt
the cars in D(πφ(j)) appear in τφ just after the cars in D(πφ(j − 1)).

The TMP and its decision version DTMP can be formulated as follows.
TrainMarshalling Problem: Given a TMP instance (n, t,D) find theminimum k ∈ N such that there exists a k-solution.
Decision Train Marshalling Problem (DTMP). Given a TMP instance (n, t,D) and k ∈ N, determine if there exists a

k-solution.

Example 1. Consider the TMP instance defined by n = 10, t = 5 and

D1 = {1, 8}, D2 = {2, 9}, D3 = {3, 7}, D4 = {4, 6}, D5 = {5, 10}.
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