Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Maximum weight independent sets in classes related to claw-free graphs

T. Karthick^a, Frédéric Maffray^{b,*}

^a Computer Science Unit, Indian Statistical Institute, Chennai Centre, Chennai 600113, India ^b CNRS, Laboratoire G-SCOP, University of Grenoble, France

ARTICLE INFO

Article history: Received 14 April 2014 Received in revised form 6 February 2015 Accepted 12 February 2015 Available online 8 March 2015

Keywords: Independent set Claw-free

1. Introduction

In an undirected graph *G*, an *independent set* is a subset of mutually nonadjacent vertices in *G*. The MAXIMUM INDEPENDENT SET (MIS) problem asks for an independent set of *G* with maximum cardinality. The MAXIMUM WEIGHT INDEPENDENT SET (MWIS) problem asks for an independent set of total maximum weight in the given graph *G* with vertex weight function *w* on V(G). The M(W)IS problem ([GT20] in [13]) is one of the fundamental algorithmic graph problems which frequently occurs as a subproblem in models in computer science, bioinformatics, operations research and other fields. Also, the problem has numerous applications, including train dispatching [12] and data mining [26]. The MWIS problem is known to be *NP*complete in general and hard to approximate; it remains *NP*-complete even on restricted classes of graphs such as trianglefree graphs [24], and ($K_{1,4}$,diamond)-free graphs [9]. Alekseev [1] showed that the M(W)IS problem remains *NP*-complete on *H*-free graphs, whenever *H* is connected, but neither a path nor a subdivision of the claw. On the other hand, the M(W)IS problem is known to be solvable in polynomial time on many graph classes by various techniques; see [1,2,4,6,7,14,17,20,21].

Here we will focus on graphs without a subdivision of a claw. For integers $i, j, k \ge 1$, let $S_{i,j,k}$ denote a tree with exactly three vertices of degree one, being at distance i, j and k from the unique vertex of degree three. The graph $S_{1,1,1}$ is called a *claw* and $S_{1,1,2}$ is called a *chair or fork*. Also, note that $S_{i,j,k}$ is a subdivision of a claw. Let $K_{p,q}$ denote the complete bipartite graph with p vertices in one partition set and q vertices in the other. Let P_n denote the path on n vertices.

Minty [22] reduced the MWIS problem on claw-free graphs to the Maximum Matching problem, and thus gave a polynomial time algorithm for the MWIS problem on claw-free graphs. Recently, the MWIS problem in extensions of claw-free graphs have received much attention. Using modular decomposition techniques, Lozin and Milanič [20] showed that the MWIS problem can be solved in polynomial time for the class of fork-free graphs, and using a combination of modular and clique separator decomposition techniques, Brandstädt et al. [6] proved that the MWIS problem can be solved in polynomial time for some for the class of apple-free graphs. It is also known that the MIS problem can be solved in polynomial time for some

* Corresponding author. E-mail addresses: tlkrkiitm@gmail.com (T. Karthick), frederic.maffray@grenoble-inp.fr (F. Maffray).

http://dx.doi.org/10.1016/j.dam.2015.02.012 0166-218X/© 2015 Elsevier B.V. All rights reserved.

ABSTRACT

The MAXIMUM WEIGHT INDEPENDENT SET (MWIS) problem on graphs with vertex weights asks for a set of pairwise nonadjacent vertices of maximum total weight. The complexity of the MWIS problem for $S_{1,1,3}$ -free graphs, and for $S_{1,2,2}$ -free graphs is unknown. We show that the MWIS problem in ($S_{1,1,3}$, banner)-free graphs, and in ($S_{1,2,2}$, bull)-free graphs can be solved in polynomial time. These results extend some known results in the literature. © 2015 Elsevier B.V. All rights reserved.

Fig. 1. Some special graphs.

subclasses of $S_{i,j,k}$ -free graphs; see [14, Table 1]. However, the complexity of the MWIS problem is unknown for the class of $S_{1,1,3}$ -free graphs, and for the class of $S_{1,2,2}$ -free graphs. In particular, the class of P_6 -free graphs, the class of $S_{1,2,2}$ -free graphs, and the class of $S_{1,1,3}$ -free graphs constitute the minimal classes, defined by forbidding a single connected subgraph on six vertices, for which the computational complexity of M(W)IS problem is unknown.

Note that the class of $S_{1,1,3}$ -free graphs and the class of $S_{1,2,2}$ -free graphs extend the class of fork-free graphs and the class of P_5 -free graphs. It is also known that the MWIS problem in P_5 -free graphs can be solved in polynomial time [19].

The *bull* is the graph with five vertices *a*, *b*, *c*, *d*, *e* and edges *ab*, *bc*, *cd*, *be*, *ce*. The *house* is the graph with five vertices *a*, *b*, *c*, *d*, *e* and edges *ab*, *bc*, *cd*, *de*, *ae*, *be* (i.e., the complementary graph of P_5). The *k*-apple is the graph obtained from a chordless cycle C_k of length $k \ge 4$ by adding a vertex that has exactly one neighbor on the cycle. The 4-apple is also called a *banner*. See Fig. 1 for some of the special graphs used in this paper. If \mathcal{F} is a family of graphs, a graph *G* is said to be \mathcal{F} -free if it contains no induced subgraph isomorphic to any graph in \mathcal{F} .

We follow the approach developed recently by Brandstädt and Giakoumakis [3], which combines modular decomposition and clique separator decomposition; and we show the following:

- (i) The MWIS problem can be efficiently solved in the class of $(S_{1,1,3}, banner)$ -free graphs. This result extends some known results in the literature such as: the aforementioned results for claw-free graphs and P_4 -free graphs, $(P_5, banner)$ -free graphs [18], and a result on the MIS problem in $(S_{1,1,3}, banner)$ -free graphs [16].
- (ii) The MWIS problem can be efficiently solved in the class of $(S_{1,2,2}, \text{bull})$ -free graphs. This result extends some known results in the literature such as: P_4 -free graphs, (chair, bull)-free graphs [4], and (P_5 , bull)-free graphs [7].

2. Notation, terminology, and preliminaries

For notation and terminology not defined here, we follow [5]. Let *G* be a finite, undirected and simple graph with vertexset *V*(*G*) and edge-set *E*(*G*). We let |V(G)| = n and |E(G)| = m. We let \overline{G} denote the complementary graph of *G*. For a vertex $v \in V(G)$, the *neighborhood* N(v) of v is the set $\{u \in V(G) \mid uv \in E(G)\}$, and its *closed neighborhood* N[v] is the set $N(v) \cup \{v\}$. The neighborhood N(X) of a subset $X \subseteq V(G)$ is the set $\{u \in V(G) \setminus X \mid u \text{ is adjacent to a vertex of } X\}$, and its closed neighborhood N[X] is the set $N(X) \cup X$. Given a subgraph *H* of *G* and $v \in V(G) \setminus V(H)$, let $N_H(v)$ denote the set $N(v) \cap V(H)$, and for $X \subseteq V(G) \setminus V(H)$, let $N_H(X)$ denote the set $N(X) \cap V(H)$. For any two subsets *S*, $T \subseteq V(G)$, we say that *S* is complete to *T* if every vertex in *S* is adjacent to every vertex in *T*.

A vertex $z \in V(G)$ distinguishes two other vertices $x, y \in V(G)$ if z is adjacent to one of them and nonadjacent to the other. A set $M \subseteq V(G)$ is a module in G if no vertex from $V(G) \setminus M$ distinguishes two vertices from M. The trivial modules in G are V(G), \emptyset , and all one-vertex sets. A graph G is prime if it contains only trivial modules. Note that prime graphs on at least three vertices are connected.

A class of graphs g is *hereditary* if every induced subgraph of a member of g is also in g. We will use the following theorem by Lozin and Milanič [20].

Theorem 1 ([20]). Let \mathcal{G} be a hereditary class of graphs. If the MWIS problem can be solved in $O(n^p)$ -time for prime graphs in \mathcal{G} , where $p \geq 1$ is a constant, then the MWIS problem can be solved for graphs in \mathcal{G} in time $O(n^p + m)$. \Box

A *clique* in *G* is a subset of pairwise adjacent vertices in *G*. A *clique separator* (or *clique cutset*) in a connected graph *G* is a subset *Q* of vertices in *G* which induces a complete graph, such that the graph induced by $V(G) \setminus Q$ is disconnected. A graph is an *atom* if it does not contain a clique separator.

Let *C* be a class of graphs. A graph *G* is *nearly C* if for every vertex *v* in *V*(*G*) the graph induced by *V*(*G*) \ *N*[*v*] is in *C*. Let $\alpha_w(G)$ denote the weighted independence number of *G*. Obviously, we have:

$$\alpha_w(G) = \max\{w(v) + \alpha_w(G \setminus N[v]) \mid v \in V(G)\}.$$
(1)

Thus, whenever MWIS is solvable in time T on a class C, then it is solvable on nearly C graphs in time $n \cdot T$. Based on Eq. (1), one can obtain the following theorem, whose proof is essentially the same as in [27, Section 3.4] and hence is omitted.

Theorem 2. Let C be a class of graphs such that MWIS can be solved in time O(f(n)) for every graph in C with n vertices. Then in any hereditary class of graphs whose atoms are all nearly C the MWIS problem can be solved in time $O(n^2 \cdot f(n))$.

The following notation will be used several times in the proofs. Given a graph *G*, let *v* be a vertex in *G* and *H* be an induced subgraph of $G \setminus N[v]$. Let t = |V(H)|. Then we define the following sets:

Download English Version:

https://daneshyari.com/en/article/4949897

Download Persian Version:

https://daneshyari.com/article/4949897

Daneshyari.com